mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #1408 from explosion/feature/dot-underscore
💫 Custom attributes via Doc._, Token._ and Span._
This commit is contained in:
commit
37aa523a8e
52
examples/pipeline/custom_attr_methods.py
Normal file
52
examples/pipeline/custom_attr_methods.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
# coding: utf-8
|
||||
"""This example contains several snippets of methods that can be set via custom
|
||||
Doc, Token or Span attributes in spaCy v2.0. Attribute methods act like
|
||||
they're "bound" to the object and are partially applied – i.e. the object
|
||||
they're called on is passed in as the first argument."""
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy import displacy
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def to_html(doc, output='/tmp', style='dep'):
|
||||
"""Doc method extension for saving the current state as a displaCy
|
||||
visualization.
|
||||
"""
|
||||
# generate filename from first six non-punct tokens
|
||||
file_name = '-'.join([w.text for w in doc[:6] if not w.is_punct]) + '.html'
|
||||
output_path = Path(output) / file_name
|
||||
html = displacy.render(doc, style=style, page=True) # render markup
|
||||
output_path.open('w', encoding='utf-8').write(html) # save to file
|
||||
print('Saved HTML to {}'.format(output_path))
|
||||
|
||||
|
||||
Doc.set_extension('to_html', method=to_html)
|
||||
|
||||
nlp = English()
|
||||
doc = nlp(u"This is a sentence about Apple.")
|
||||
# add entity manually for demo purposes, to make it work without a model
|
||||
doc.ents = [Span(doc, 5, 6, label=nlp.vocab.strings['ORG'])]
|
||||
doc._.to_html(style='ent')
|
||||
|
||||
|
||||
def overlap_tokens(doc, other_doc):
|
||||
"""Get the tokens from the original Doc that are also in the comparison Doc.
|
||||
"""
|
||||
overlap = []
|
||||
other_tokens = [token.text for token in other_doc]
|
||||
for token in doc:
|
||||
if token.text in other_tokens:
|
||||
overlap.append(token)
|
||||
return overlap
|
||||
|
||||
|
||||
Doc.set_extension('overlap', method=overlap_tokens)
|
||||
|
||||
nlp = English()
|
||||
doc1 = nlp(u"Peach emoji is where it has always been.")
|
||||
doc2 = nlp(u"Peach is the superior emoji.")
|
||||
tokens = doc1._.overlap(doc2)
|
||||
print(tokens)
|
108
examples/pipeline/custom_component_countries_api.py
Normal file
108
examples/pipeline/custom_component_countries_api.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import requests
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import Doc, Span, Token
|
||||
|
||||
|
||||
class RESTCountriesComponent(object):
|
||||
"""Example of a spaCy v2.0 pipeline component that requests all countries
|
||||
via the REST Countries API, merges country names into one token, assigns
|
||||
entity labels and sets attributes on country tokens, e.g. the capital and
|
||||
lat/lng coordinates. Can be extended with more details from the API.
|
||||
|
||||
REST Countries API: https://restcountries.eu
|
||||
API License: Mozilla Public License MPL 2.0
|
||||
"""
|
||||
name = 'rest_countries' # component name, will show up in the pipeline
|
||||
|
||||
def __init__(self, nlp, label='GPE'):
|
||||
"""Initialise the pipeline component. The shared nlp instance is used
|
||||
to initialise the matcher with the shared vocab, get the label ID and
|
||||
generate Doc objects as phrase match patterns.
|
||||
"""
|
||||
# Make request once on initialisation and store the data
|
||||
r = requests.get('https://restcountries.eu/rest/v2/all')
|
||||
r.raise_for_status() # make sure requests raises an error if it fails
|
||||
countries = r.json()
|
||||
|
||||
# Convert API response to dict keyed by country name for easy lookup
|
||||
# This could also be extended using the alternative and foreign language
|
||||
# names provided by the API
|
||||
self.countries = {c['name']: c for c in countries}
|
||||
self.label = nlp.vocab.strings[label] # get entity label ID
|
||||
|
||||
# Set up the PhraseMatcher with Doc patterns for each country name
|
||||
patterns = [nlp(c) for c in self.countries.keys()]
|
||||
self.matcher = PhraseMatcher(nlp.vocab)
|
||||
self.matcher.add('COUNTRIES', None, *patterns)
|
||||
|
||||
# Register attribute on the Token. We'll be overwriting this based on
|
||||
# the matches, so we're only setting a default value, not a getter.
|
||||
# If no default value is set, it defaults to None.
|
||||
Token.set_extension('is_country', default=False)
|
||||
Token.set_extension('country_capital')
|
||||
Token.set_extension('country_latlng')
|
||||
Token.set_extension('country_flag')
|
||||
|
||||
# Register attributes on Doc and Span via a getter that checks if one of
|
||||
# the contained tokens is set to is_country == True.
|
||||
Doc.set_extension('has_country', getter=self.has_country)
|
||||
Span.set_extension('has_country', getter=self.has_country)
|
||||
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipeline component on a Doc object and modify it if matches
|
||||
are found. Return the Doc, so it can be processed by the next component
|
||||
in the pipeline, if available.
|
||||
"""
|
||||
matches = self.matcher(doc)
|
||||
spans = [] # keep the spans for later so we can merge them afterwards
|
||||
for _, start, end in matches:
|
||||
# Generate Span representing the entity & set label
|
||||
entity = Span(doc, start, end, label=self.label)
|
||||
spans.append(entity)
|
||||
# Set custom attribute on each token of the entity
|
||||
# Can be extended with other data returned by the API, like
|
||||
# currencies, country code, flag, calling code etc.
|
||||
for token in entity:
|
||||
token._.set('is_country', True)
|
||||
token._.set('country_capital', self.countries[entity.text]['capital'])
|
||||
token._.set('country_latlng', self.countries[entity.text]['latlng'])
|
||||
token._.set('country_flag', self.countries[entity.text]['flag'])
|
||||
# Overwrite doc.ents and add entity – be careful not to replace!
|
||||
doc.ents = list(doc.ents) + [entity]
|
||||
for span in spans:
|
||||
# Iterate over all spans and merge them into one token. This is done
|
||||
# after setting the entities – otherwise, it would cause mismatched
|
||||
# indices!
|
||||
span.merge()
|
||||
return doc # don't forget to return the Doc!
|
||||
|
||||
def has_country(self, tokens):
|
||||
"""Getter for Doc and Span attributes. Returns True if one of the tokens
|
||||
is a country. Since the getter is only called when we access the
|
||||
attribute, we can refer to the Token's 'is_country' attribute here,
|
||||
which is already set in the processing step."""
|
||||
return any([t._.get('is_country') for t in tokens])
|
||||
|
||||
|
||||
# For simplicity, we start off with only the blank English Language class and
|
||||
# no model or pre-defined pipeline loaded.
|
||||
|
||||
nlp = English()
|
||||
rest_countries = RESTCountriesComponent(nlp) # initialise component
|
||||
nlp.add_pipe(rest_countries) # add it to the pipeline
|
||||
|
||||
doc = nlp(u"Some text about Colombia and the Czech Republic")
|
||||
|
||||
print('Pipeline', nlp.pipe_names) # pipeline contains component name
|
||||
print('Doc has countries', doc._.has_country) # Doc contains countries
|
||||
for token in doc:
|
||||
if token._.is_country:
|
||||
print(token.text, token._.country_capital, token._.country_latlng,
|
||||
token._.country_flag) # country data
|
||||
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all countries are entities
|
85
examples/pipeline/custom_component_entities.py
Normal file
85
examples/pipeline/custom_component_entities.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import Doc, Span, Token
|
||||
|
||||
|
||||
class TechCompanyRecognizer(object):
|
||||
"""Example of a spaCy v2.0 pipeline component that sets entity annotations
|
||||
based on list of single or multiple-word company names. Companies are
|
||||
labelled as ORG and their spans are merged into one token. Additionally,
|
||||
._.has_tech_org and ._.is_tech_org is set on the Doc/Span and Token
|
||||
respectively."""
|
||||
name = 'tech_companies' # component name, will show up in the pipeline
|
||||
|
||||
def __init__(self, nlp, companies=tuple(), label='ORG'):
|
||||
"""Initialise the pipeline component. The shared nlp instance is used
|
||||
to initialise the matcher with the shared vocab, get the label ID and
|
||||
generate Doc objects as phrase match patterns.
|
||||
"""
|
||||
self.label = nlp.vocab.strings[label] # get entity label ID
|
||||
|
||||
# Set up the PhraseMatcher – it can now take Doc objects as patterns,
|
||||
# so even if the list of companies is long, it's very efficient
|
||||
patterns = [nlp(org) for org in companies]
|
||||
self.matcher = PhraseMatcher(nlp.vocab)
|
||||
self.matcher.add('TECH_ORGS', None, *patterns)
|
||||
|
||||
# Register attribute on the Token. We'll be overwriting this based on
|
||||
# the matches, so we're only setting a default value, not a getter.
|
||||
Token.set_extension('is_tech_org', default=False)
|
||||
|
||||
# Register attributes on Doc and Span via a getter that checks if one of
|
||||
# the contained tokens is set to is_tech_org == True.
|
||||
Doc.set_extension('has_tech_org', getter=self.has_tech_org)
|
||||
Span.set_extension('has_tech_org', getter=self.has_tech_org)
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipeline component on a Doc object and modify it if matches
|
||||
are found. Return the Doc, so it can be processed by the next component
|
||||
in the pipeline, if available.
|
||||
"""
|
||||
matches = self.matcher(doc)
|
||||
spans = [] # keep the spans for later so we can merge them afterwards
|
||||
for _, start, end in matches:
|
||||
# Generate Span representing the entity & set label
|
||||
entity = Span(doc, start, end, label=self.label)
|
||||
spans.append(entity)
|
||||
# Set custom attribute on each token of the entity
|
||||
for token in entity:
|
||||
token._.set('is_tech_org', True)
|
||||
# Overwrite doc.ents and add entity – be careful not to replace!
|
||||
doc.ents = list(doc.ents) + [entity]
|
||||
for span in spans:
|
||||
# Iterate over all spans and merge them into one token. This is done
|
||||
# after setting the entities – otherwise, it would cause mismatched
|
||||
# indices!
|
||||
span.merge()
|
||||
return doc # don't forget to return the Doc!
|
||||
|
||||
def has_tech_org(self, tokens):
|
||||
"""Getter for Doc and Span attributes. Returns True if one of the tokens
|
||||
is a tech org. Since the getter is only called when we access the
|
||||
attribute, we can refer to the Token's 'is_tech_org' attribute here,
|
||||
which is already set in the processing step."""
|
||||
return any([t._.get('is_tech_org') for t in tokens])
|
||||
|
||||
|
||||
# For simplicity, we start off with only the blank English Language class and
|
||||
# no model or pre-defined pipeline loaded.
|
||||
|
||||
nlp = English()
|
||||
companies = ['Alphabet Inc.', 'Google', 'Netflix', 'Apple'] # etc.
|
||||
component = TechCompanyRecognizer(nlp, companies) # initialise component
|
||||
nlp.add_pipe(component, last=True) # add it to the pipeline as the last element
|
||||
|
||||
doc = nlp(u"Alphabet Inc. is the company behind Google.")
|
||||
|
||||
print('Pipeline', nlp.pipe_names) # pipeline contains component name
|
||||
print('Tokens', [t.text for t in doc]) # company names from the list are merged
|
||||
print('Doc has_tech_org', doc._.has_tech_org) # Doc contains tech orgs
|
||||
print('Token 0 is_tech_org', doc[0]._.is_tech_org) # "Alphabet Inc." is a tech org
|
||||
print('Token 1 is_tech_org', doc[1]._.is_tech_org) # "is" is not
|
||||
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all orgs are entities
|
|
@ -226,7 +226,14 @@ class Language(object):
|
|||
>>> nlp.add_pipe(component, name='custom_name', last=True)
|
||||
"""
|
||||
if name is None:
|
||||
name = getattr(component, 'name', component.__name__)
|
||||
if hasattr(component, 'name'):
|
||||
name = component.name
|
||||
elif hasattr(component, '__name__'):
|
||||
name = component.__name__
|
||||
elif hasattr(component, '__class__') and hasattr(component.__class__, '__name__'):
|
||||
name = component.__class__.__name__
|
||||
else:
|
||||
name = repr(component)
|
||||
if name in self.pipe_names:
|
||||
raise ValueError("'{}' already exists in pipeline.".format(name))
|
||||
if sum([bool(before), bool(after), bool(first), bool(last)]) >= 2:
|
||||
|
|
53
spacy/tests/test_underscore.py
Normal file
53
spacy/tests/test_underscore.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
from mock import Mock
|
||||
from ..tokens.underscore import Underscore
|
||||
|
||||
|
||||
def test_create_doc_underscore():
|
||||
doc = Mock()
|
||||
doc.doc = doc
|
||||
uscore = Underscore(Underscore.doc_extensions, doc)
|
||||
assert uscore._doc is doc
|
||||
assert uscore._start is None
|
||||
assert uscore._end is None
|
||||
|
||||
|
||||
def test_doc_underscore_getattr_setattr():
|
||||
doc = Mock()
|
||||
doc.doc = doc
|
||||
doc.user_data = {}
|
||||
Underscore.doc_extensions['hello'] = (False, None, None, None)
|
||||
doc._ = Underscore(Underscore.doc_extensions, doc)
|
||||
assert doc._.hello == False
|
||||
doc._.hello = True
|
||||
assert doc._.hello == True
|
||||
|
||||
|
||||
def test_create_span_underscore():
|
||||
span = Mock(doc=Mock(), start=0, end=2)
|
||||
uscore = Underscore(Underscore.span_extensions, span,
|
||||
start=span.start, end=span.end)
|
||||
assert uscore._doc is span.doc
|
||||
assert uscore._start is span.start
|
||||
assert uscore._end is span.end
|
||||
|
||||
|
||||
def test_span_underscore_getter_setter():
|
||||
span = Mock(doc=Mock(), start=0, end=2)
|
||||
Underscore.span_extensions['hello'] = (None, None,
|
||||
lambda s: (s.start, 'hi'),
|
||||
lambda s, value: setattr(s, 'start',
|
||||
value))
|
||||
span._ = Underscore(Underscore.span_extensions, span,
|
||||
start=span.start, end=span.end)
|
||||
|
||||
assert span._.hello == (0, 'hi')
|
||||
span._.hello = 1
|
||||
assert span._.hello == (1, 'hi')
|
||||
|
||||
|
||||
def test_token_underscore_method():
|
||||
token = Mock(doc=Mock(), idx=7, say_cheese=lambda token: 'cheese')
|
||||
Underscore.token_extensions['hello'] = (None, token.say_cheese,
|
||||
None, None)
|
||||
token._ = Underscore(Underscore.token_extensions, token, start=token.idx)
|
||||
assert token._.hello() == 'cheese'
|
|
@ -30,7 +30,7 @@ from ..util import normalize_slice
|
|||
from ..compat import is_config
|
||||
from .. import about
|
||||
from .. import util
|
||||
|
||||
from .underscore import Underscore
|
||||
|
||||
DEF PADDING = 5
|
||||
|
||||
|
@ -64,6 +64,7 @@ cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
|
|||
else:
|
||||
return Lexeme.get_struct_attr(token.lex, feat_name)
|
||||
|
||||
|
||||
def _get_chunker(lang):
|
||||
try:
|
||||
cls = util.get_lang_class(lang)
|
||||
|
@ -73,6 +74,7 @@ def _get_chunker(lang):
|
|||
return None
|
||||
return cls.Defaults.syntax_iterators.get(u'noun_chunks')
|
||||
|
||||
|
||||
cdef class Doc:
|
||||
"""A sequence of Token objects. Access sentences and named entities, export
|
||||
annotations to numpy arrays, losslessly serialize to compressed binary strings.
|
||||
|
@ -87,6 +89,21 @@ cdef class Doc:
|
|||
>>> from spacy.tokens import Doc
|
||||
>>> doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'], spaces=[True, False, False])
|
||||
"""
|
||||
@classmethod
|
||||
def set_extension(cls, name, default=None, method=None,
|
||||
getter=None, setter=None):
|
||||
nr_defined = sum(t is not None for t in (default, getter, setter, method))
|
||||
assert nr_defined == 1
|
||||
Underscore.doc_extensions[name] = (default, method, getter, setter)
|
||||
|
||||
@classmethod
|
||||
def get_extension(cls, name):
|
||||
return Underscore.doc_extensions.get(name)
|
||||
|
||||
@classmethod
|
||||
def has_extension(cls, name):
|
||||
return name in Underscore.doc_extensions
|
||||
|
||||
def __init__(self, Vocab vocab, words=None, spaces=None, orths_and_spaces=None):
|
||||
"""Create a Doc object.
|
||||
|
||||
|
@ -159,6 +176,10 @@ cdef class Doc:
|
|||
self.is_tagged = True
|
||||
self.is_parsed = True
|
||||
|
||||
@property
|
||||
def _(self):
|
||||
return Underscore(Underscore.doc_extensions, self)
|
||||
|
||||
def __getitem__(self, object i):
|
||||
"""Get a `Token` or `Span` object.
|
||||
|
||||
|
|
|
@ -17,10 +17,24 @@ from ..attrs cimport IS_PUNCT, IS_SPACE
|
|||
from ..lexeme cimport Lexeme
|
||||
from ..compat import is_config
|
||||
from .. import about
|
||||
from .underscore import Underscore
|
||||
|
||||
|
||||
cdef class Span:
|
||||
"""A slice from a Doc object."""
|
||||
@classmethod
|
||||
def set_extension(cls, name, default=None, method=None,
|
||||
getter=None, setter=None):
|
||||
Underscore.span_extensions[name] = (default, method, getter, setter)
|
||||
|
||||
@classmethod
|
||||
def get_extension(cls, name):
|
||||
return Underscore.span_extensions.get(name)
|
||||
|
||||
@classmethod
|
||||
def has_extension(cls, name):
|
||||
return name in Underscore.span_extensions
|
||||
|
||||
def __cinit__(self, Doc doc, int start, int end, attr_t label=0, vector=None,
|
||||
vector_norm=None):
|
||||
"""Create a `Span` object from the slice `doc[start : end]`.
|
||||
|
@ -111,10 +125,14 @@ cdef class Span:
|
|||
for i in range(self.start, self.end):
|
||||
yield self.doc[i]
|
||||
|
||||
@property
|
||||
def _(self):
|
||||
return Underscore(Underscore.span_extensions, self,
|
||||
start=self.start_char, end=self.end_char)
|
||||
def as_doc(self):
|
||||
'''Create a Doc object view of the Span's data.
|
||||
|
||||
This is mostly useful for C-typed interfaces.
|
||||
This is mostly useful for C-typed interfaces.
|
||||
'''
|
||||
cdef Doc doc = Doc(self.doc.vocab)
|
||||
doc.length = self.end-self.start
|
||||
|
|
|
@ -20,10 +20,24 @@ from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUST
|
|||
from ..attrs cimport LEMMA, POS, TAG, DEP
|
||||
from ..compat import is_config
|
||||
from .. import about
|
||||
from .underscore import Underscore
|
||||
|
||||
|
||||
cdef class Token:
|
||||
"""An individual token – i.e. a word, punctuation symbol, whitespace, etc."""
|
||||
@classmethod
|
||||
def set_extension(cls, name, default=None, method=None,
|
||||
getter=None, setter=None):
|
||||
Underscore.token_extensions[name] = (default, method, getter, setter)
|
||||
|
||||
@classmethod
|
||||
def get_extension(cls, name):
|
||||
return Underscore.span_extensions.get(name)
|
||||
|
||||
@classmethod
|
||||
def has_extension(cls, name):
|
||||
return name in Underscore.span_extensions
|
||||
|
||||
def __cinit__(self, Vocab vocab, Doc doc, int offset):
|
||||
"""Construct a `Token` object.
|
||||
|
||||
|
@ -87,6 +101,11 @@ cdef class Token:
|
|||
else:
|
||||
raise ValueError(op)
|
||||
|
||||
@property
|
||||
def _(self):
|
||||
return Underscore(Underscore.token_extensions, self,
|
||||
start=self.idx, end=None)
|
||||
|
||||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||||
"""Check the value of a boolean flag.
|
||||
|
||||
|
@ -266,7 +285,7 @@ cdef class Token:
|
|||
def __get__(self):
|
||||
if 'vector_norm' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks['vector_norm'](self)
|
||||
vector = self.vector
|
||||
vector = self.vector
|
||||
return numpy.sqrt((vector ** 2).sum())
|
||||
|
||||
property n_lefts:
|
||||
|
|
50
spacy/tokens/underscore.py
Normal file
50
spacy/tokens/underscore.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
import functools
|
||||
|
||||
class Underscore(object):
|
||||
doc_extensions = {}
|
||||
span_extensions = {}
|
||||
token_extensions = {}
|
||||
|
||||
def __init__(self, extensions, obj, start=None, end=None):
|
||||
object.__setattr__(self, '_extensions', extensions)
|
||||
object.__setattr__(self, '_obj', obj)
|
||||
# Assumption is that for doc values, _start and _end will both be None
|
||||
# Span will set non-None values for _start and _end
|
||||
# Token will have _start be non-None, _end be None
|
||||
# This lets us key everything into the doc.user_data dictionary,
|
||||
# (see _get_key), and lets us use a single Underscore class.
|
||||
object.__setattr__(self, '_doc', obj.doc)
|
||||
object.__setattr__(self, '_start', start)
|
||||
object.__setattr__(self, '_end', end)
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name not in self._extensions:
|
||||
raise AttributeError(name)
|
||||
default, method, getter, setter = self._extensions[name]
|
||||
if getter is not None:
|
||||
return getter(self._obj)
|
||||
elif method is not None:
|
||||
return functools.partial(method, self._obj)
|
||||
else:
|
||||
return self._doc.user_data.get(self._get_key(name), default)
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name not in self._extensions:
|
||||
raise AttributeError(name)
|
||||
default, method, getter, setter = self._extensions[name]
|
||||
if setter is not None:
|
||||
return setter(self._obj, value)
|
||||
else:
|
||||
self._doc.user_data[self._get_key(name)] = value
|
||||
|
||||
def set(self, name, value):
|
||||
return self.__setattr__(name, value)
|
||||
|
||||
def get(self, name):
|
||||
return self.__getattr__(name)
|
||||
|
||||
def has(self, name):
|
||||
return name in self._extensions
|
||||
|
||||
def _get_key(self, name):
|
||||
return ('._.', name, self._start, self._end)
|
|
@ -149,7 +149,7 @@ mixin code(label, language, prompt, height, icon, wrap)
|
|||
|
||||
//- Code blocks to display old/new versions
|
||||
|
||||
mixin code-compare()
|
||||
mixin code-wrapper()
|
||||
span.u-inline-block.u-padding-top.u-width-full
|
||||
block
|
||||
|
||||
|
|
|
@ -138,6 +138,109 @@ p Get the number of tokens in the document.
|
|||
+cell int
|
||||
+cell The number of tokens in the document.
|
||||
|
||||
+h(2, "set_extension") Doc.set_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Define a custom attribute on the #[code Doc] which becomes available via
|
||||
| #[code Doc._]. For details, see the documentation on
|
||||
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Doc
|
||||
city_getter = lambda doc: doc.text in ('New York', 'Paris', 'Berlin')
|
||||
Doc.set_extension('has_city', getter=city_getter)
|
||||
doc = nlp(u'I like New York')
|
||||
assert doc._.has_city
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell
|
||||
| Name of the attribute to set by the extension. For example,
|
||||
| #[code 'my_attr'] will be available as #[code doc._.my_attr].
|
||||
|
||||
+row
|
||||
+cell #[code default]
|
||||
+cell -
|
||||
+cell
|
||||
| Optional default value of the attribute if no getter or method
|
||||
| is defined.
|
||||
|
||||
+row
|
||||
+cell #[code method]
|
||||
+cell callable
|
||||
+cell
|
||||
| Set a custom method on the object, for example
|
||||
| #[code doc._.compare(other_doc)].
|
||||
|
||||
+row
|
||||
+cell #[code getter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Getter function that takes the object and returns an attribute
|
||||
| value. Is called when the user accesses the #[code ._] attribute.
|
||||
|
||||
+row
|
||||
+cell #[code setter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Setter function that takes the #[code Doc] and a value, and
|
||||
| modifies the object. Is called when the user writes to the
|
||||
| #[code Doc._] attribute.
|
||||
|
||||
+h(2, "get_extension") Doc.get_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Look up a previously registered extension by name. Returns a 4-tuple
|
||||
| #[code.u-break (default, method, getter, setter)] if the extension is
|
||||
| registered. Raises a #[code KeyError] otherwise.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension('is_city', default=False)
|
||||
extension = Doc.get_extension('is_city')
|
||||
assert extension == (False, None, None, None)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell tuple
|
||||
+cell
|
||||
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
||||
| extension.
|
||||
|
||||
+h(2, "has_extension") Doc.has_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p Check whether an extension has been registered on the #[code Doc] class.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension('is_city', default=False)
|
||||
assert Doc.has_extension('is_city')
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension to check.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell bool
|
||||
+cell Whether the extension has been registered.
|
||||
|
||||
+h(2, "char_span") Doc.char_span
|
||||
+tag method
|
||||
+tag-new(2)
|
||||
|
|
|
@ -116,6 +116,109 @@ p Get the number of tokens in the span.
|
|||
+cell int
|
||||
+cell The number of tokens in the span.
|
||||
|
||||
+h(2, "set_extension") Span.set_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Define a custom attribute on the #[code Span] which becomes available via
|
||||
| #[code Span._]. For details, see the documentation on
|
||||
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Span
|
||||
city_getter = lambda span: span.text in ('New York', 'Paris', 'Berlin')
|
||||
Span.set_extension('has_city', getter=city_getter)
|
||||
doc = nlp(u'I like New York in Autumn')
|
||||
assert doc[1:4]._.has_city
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell
|
||||
| Name of the attribute to set by the extension. For example,
|
||||
| #[code 'my_attr'] will be available as #[code span._.my_attr].
|
||||
|
||||
+row
|
||||
+cell #[code default]
|
||||
+cell -
|
||||
+cell
|
||||
| Optional default value of the attribute if no getter or method
|
||||
| is defined.
|
||||
|
||||
+row
|
||||
+cell #[code method]
|
||||
+cell callable
|
||||
+cell
|
||||
| Set a custom method on the object, for example
|
||||
| #[code span._.compare(other_span)].
|
||||
|
||||
+row
|
||||
+cell #[code getter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Getter function that takes the object and returns an attribute
|
||||
| value. Is called when the user accesses the #[code ._] attribute.
|
||||
|
||||
+row
|
||||
+cell #[code setter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Setter function that takes the #[code Span] and a value, and
|
||||
| modifies the object. Is called when the user writes to the
|
||||
| #[code Span._] attribute.
|
||||
|
||||
+h(2, "get_extension") Span.get_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Look up a previously registered extension by name. Returns a 4-tuple
|
||||
| #[code.u-break (default, method, getter, setter)] if the extension is
|
||||
| registered. Raises a #[code KeyError] otherwise.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Span
|
||||
Span.set_extension('is_city', default=False)
|
||||
extension = Span.get_extension('is_city')
|
||||
assert extension == (False, None, None, None)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell tuple
|
||||
+cell
|
||||
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
||||
| extension.
|
||||
|
||||
+h(2, "has_extension") Span.has_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p Check whether an extension has been registered on the #[code Span] class.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Span
|
||||
Span.set_extension('is_city', default=False)
|
||||
assert Span.has_extension('is_city')
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension to check.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell bool
|
||||
+cell Whether the extension has been registered.
|
||||
|
||||
+h(2, "similarity") Span.similarity
|
||||
+tag method
|
||||
+tag-model("vectors")
|
||||
|
|
|
@ -51,6 +51,109 @@ p The number of unicode characters in the token, i.e. #[code token.text].
|
|||
+cell int
|
||||
+cell The number of unicode characters in the token.
|
||||
|
||||
+h(2, "set_extension") Token.set_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Define a custom attribute on the #[code Token] which becomes available
|
||||
| via #[code Token._]. For details, see the documentation on
|
||||
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Token
|
||||
fruit_getter = lambda token: token.text in ('apple', 'pear', 'banana')
|
||||
Token.set_extension('is_fruit', getter=fruit_getter)
|
||||
doc = nlp(u'I have an apple')
|
||||
assert doc[3]._.is_fruit
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell
|
||||
| Name of the attribute to set by the extension. For example,
|
||||
| #[code 'my_attr'] will be available as #[code token._.my_attr].
|
||||
|
||||
+row
|
||||
+cell #[code default]
|
||||
+cell -
|
||||
+cell
|
||||
| Optional default value of the attribute if no getter or method
|
||||
| is defined.
|
||||
|
||||
+row
|
||||
+cell #[code method]
|
||||
+cell callable
|
||||
+cell
|
||||
| Set a custom method on the object, for example
|
||||
| #[code token._.compare(other_token)].
|
||||
|
||||
+row
|
||||
+cell #[code getter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Getter function that takes the object and returns an attribute
|
||||
| value. Is called when the user accesses the #[code ._] attribute.
|
||||
|
||||
+row
|
||||
+cell #[code setter]
|
||||
+cell callable
|
||||
+cell
|
||||
| Setter function that takes the #[code Token] and a value, and
|
||||
| modifies the object. Is called when the user writes to the
|
||||
| #[code Token._] attribute.
|
||||
|
||||
+h(2, "get_extension") Token.get_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| Look up a previously registered extension by name. Returns a 4-tuple
|
||||
| #[code.u-break (default, method, getter, setter)] if the extension is
|
||||
| registered. Raises a #[code KeyError] otherwise.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Token
|
||||
Token.set_extension('is_fruit', default=False)
|
||||
extension = Token.get_extension('is_fruit')
|
||||
assert extension == (False, None, None, None)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell tuple
|
||||
+cell
|
||||
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
||||
| extension.
|
||||
|
||||
+h(2, "has_extension") Token.has_extension
|
||||
+tag classmethod
|
||||
+tag-new(2)
|
||||
|
||||
p Check whether an extension has been registered on the #[code Token] class.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens import Token
|
||||
Token.set_extension('is_fruit', default=False)
|
||||
assert Token.has_extension('is_fruit')
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code name]
|
||||
+cell unicode
|
||||
+cell Name of the extension to check.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell bool
|
||||
+cell Whether the extension has been registered.
|
||||
|
||||
+h(2, "check_flag") Token.check_flag
|
||||
+tag method
|
||||
|
||||
|
|
|
@ -105,9 +105,9 @@
|
|||
"menu": {
|
||||
"How Pipelines Work": "pipelines",
|
||||
"Custom Components": "custom-components",
|
||||
"Developing Extensions": "extensions",
|
||||
"Multi-threading": "multithreading",
|
||||
"Serialization": "serialization",
|
||||
"Developing Extensions": "extensions"
|
||||
"Serialization": "serialization"
|
||||
}
|
||||
},
|
||||
|
||||
|
@ -195,6 +195,7 @@
|
|||
"teaser": "Full code examples you can modify and run.",
|
||||
"next": "resources",
|
||||
"menu": {
|
||||
"Pipeline": "pipeline",
|
||||
"Matching": "matching",
|
||||
"Training": "training",
|
||||
"Deep Learning": "deep-learning"
|
||||
|
|
|
@ -1,12 +1,11 @@
|
|||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
|
||||
|
||||
p
|
||||
| A component receives a #[code Doc] object and
|
||||
| #[strong performs the actual processing] – for example, using the current
|
||||
| weights to make a prediction and set some annotation on the document. By
|
||||
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
||||
| at any point #[strong during] processing – instead of only being able to
|
||||
| modify it afterwards.
|
||||
| A component receives a #[code Doc] object and can modify it – for example,
|
||||
| by using the current weights to make a prediction and set some annotation
|
||||
| on the document. By adding a component to the pipeline, you'll get access
|
||||
| to the #[code Doc] at any point #[strong during processing] – instead of
|
||||
| only being able to modify it afterwards.
|
||||
|
||||
+aside-code("Example").
|
||||
def my_component(doc):
|
||||
|
@ -27,10 +26,10 @@ p
|
|||
p
|
||||
| Custom components can be added to the pipeline using the
|
||||
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
|
||||
| can either specify a component to add it before or after, tell spaCy
|
||||
| to add it first or last in the pipeline, or define a custom name.
|
||||
| If no name is set and no #[code name] attribute is present on your
|
||||
| component, the function name, e.g. #[code component.__name__] is used.
|
||||
| can either specify a component to add it #[strong before or after], tell
|
||||
| spaCy to add it #[strong first or last] in the pipeline, or define a
|
||||
| #[strong custom name]. If no name is set and no #[code name] attribute
|
||||
| is present on your component, the function name is used.
|
||||
|
||||
+code("Adding pipeline components").
|
||||
def my_component(doc):
|
||||
|
@ -67,7 +66,19 @@ p
|
|||
nlp.add_pipe(my_component, first=True)
|
||||
|
||||
+h(3, "custom-components-attributes")
|
||||
| Setting attributes on the #[code Doc], #[code Span] and #[code Token]
|
||||
| Extension attributes on #[code Doc], #[code Span] and #[code Token]
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| As of v2.0, spaCy allows you to set any custom attributes and methods
|
||||
| on the #[code Doc], #[code Span] and #[code Token], which become
|
||||
| available as #[code Doc._], #[code Span._] and #[code Token._] – for
|
||||
| example, #[code Token._.my_attr]. This lets you store additional
|
||||
| information relevant to your application, add new features and
|
||||
| functionality to spaCy, and implement your own models trained with other
|
||||
| machine learning libraries. It also lets you take advantage of spaCy's
|
||||
| data structures and the #[code Doc] object as the "single source of
|
||||
| truth".
|
||||
|
||||
+aside("Why ._?")
|
||||
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
|
||||
|
@ -78,9 +89,216 @@ p
|
|||
| what's custom – for example, #[code doc.sentiment] is spaCy, while
|
||||
| #[code doc._.sent_score] isn't.
|
||||
|
||||
+under-construction
|
||||
p
|
||||
| There are three main types of extensions, which can be defined using the
|
||||
| #[+api("doc#set_extension") #[code Doc.set_extension]],
|
||||
| #[+api("span#set_extension") #[code Span.set_extension]] and
|
||||
| #[+api("token#set_extension") #[code Token.set_extension]] methods.
|
||||
|
||||
+h(3, "custom-components-user-hooks") Other user hooks
|
||||
+list("numbers")
|
||||
+item #[strong Attribute extensions].
|
||||
| Set a default value for an attribute, which can be overwritten
|
||||
| manually at any time. Attribute extensions work like "normal"
|
||||
| variables and are the quickest way to store arbitrary information
|
||||
| on a #[code Doc], #[code Span] or #[code Token].
|
||||
|
||||
+code-wrapper
|
||||
+code.
|
||||
Doc.set_extension('hello', default=True)
|
||||
assert doc._.hello
|
||||
doc._.hello = False
|
||||
|
||||
+item #[strong Property extensions].
|
||||
| Define a getter and an optional setter function. If no setter is
|
||||
| provided, the extension is immutable. Since the getter and setter
|
||||
| functions are only called when you #[em retrieve] the attribute,
|
||||
| you can also access values of previously added attribute extensions.
|
||||
| For example, a #[code Doc] getter can average over #[code Token]
|
||||
| attributes. For #[code Span] extensions, you'll almost always want
|
||||
| to use a property – otherwise, you'd have to write to
|
||||
| #[em every possible] #[code Span] in the #[code Doc] to set up the
|
||||
| values correctly.
|
||||
|
||||
+code-wrapper
|
||||
+code.
|
||||
Doc.set_extension('hello', getter=get_hello_value, setter=set_hello_value)
|
||||
assert doc._.hello
|
||||
doc._.hello = 'Hi!'
|
||||
|
||||
+item #[strong Method extensions].
|
||||
| Assign a function that becomes available as an object method. Method
|
||||
| extensions are always immutable. For more details and implementation
|
||||
| ideas, see
|
||||
| #[+a("/usage/examples#custom-components-attr-methods") these examples].
|
||||
|
||||
+code-wrapper
|
||||
+code.o-no-block.
|
||||
Doc.set_extension('hello', method=lambda doc, name: 'Hi {}!'.format(name))
|
||||
assert doc._.hello('Bob') == 'Hi Bob!'
|
||||
|
||||
p
|
||||
| Before you can access a custom extension, you need to register it using
|
||||
| the #[code set_extension] method on the object you want
|
||||
| to add it to, e.g. the #[code Doc]. Keep in mind that extensions are
|
||||
| always #[strong added globally] and not just on a particular instance.
|
||||
| If an attribute of the same name
|
||||
| already exists, or if you're trying to access an attribute that hasn't
|
||||
| been registered, spaCy will raise an #[code AttributeError].
|
||||
|
||||
+code("Example").
|
||||
from spacy.tokens import Doc, Span, Token
|
||||
|
||||
fruits = ['apple', 'pear', 'banana', 'orange', 'strawberry']
|
||||
is_fruit_getter = lambda token: token.text in fruits
|
||||
has_fruit_getter = lambda obj: any([t.text in fruits for t in obj])
|
||||
|
||||
Token.set_extension('is_fruit', getter=is_fruit_getter)
|
||||
Doc.set_extension('has_fruit', getter=has_fruit_getter)
|
||||
Span.set_extension('has_fruit', getter=has_fruit_getter)
|
||||
|
||||
+aside-code("Usage example").
|
||||
doc = nlp(u"I have an apple and a melon")
|
||||
assert doc[3]._.is_fruit # get Token attributes
|
||||
assert not doc[0]._.is_fruit
|
||||
assert doc._.has_fruit # get Doc attributes
|
||||
assert doc[1:4]._.has_fruit # get Span attributes
|
||||
|
||||
p
|
||||
| Once you've registered your custom attribute, you can also use the
|
||||
| built-in #[code set], #[code get] and #[code has] methods to modify and
|
||||
| retrieve the attributes. This is especially useful it you want to pass in
|
||||
| a string instead of calling #[code doc._.my_attr].
|
||||
|
||||
+table(["Method", "Description", "Valid for", "Example"])
|
||||
+row
|
||||
+cell #[code ._.set()]
|
||||
+cell Set a value for an attribute.
|
||||
+cell Attributes, mutable properties.
|
||||
+cell #[code.u-break token._.set('my_attr', True)]
|
||||
|
||||
+row
|
||||
+cell #[code ._.get()]
|
||||
+cell Get the value of an attribute.
|
||||
+cell Attributes, mutable properties, immutable properties, methods.
|
||||
+cell #[code.u-break my_attr = span._.get('my_attr')]
|
||||
|
||||
+row
|
||||
+cell #[code ._.has()]
|
||||
+cell Check if an attribute exists.
|
||||
+cell Attributes, mutable properties, immutable properties, methods.
|
||||
+cell #[code.u-break doc._.has('my_attr')]
|
||||
|
||||
+infobox("How the ._ is implemented")
|
||||
| Extension definitions – the defaults, methods, getters and setters you
|
||||
| pass in to #[code set_extension] are stored in class attributes on the
|
||||
| #[code Underscore] class. If you write to an extension attribute, e.g.
|
||||
| #[code doc._.hello = True], the data is stored within the
|
||||
| #[+api("doc#attributes") #[code Doc.user_data]] dictionary. To keep the
|
||||
| underscore data separate from your other dictionary entries, the string
|
||||
| #[code "._."] is placed before the name, in a tuple.
|
||||
|
||||
+h(4, "component-example1") Example: Custom sentence segmentation logic
|
||||
|
||||
p
|
||||
| Let's say you want to implement custom logic to improve spaCy's sentence
|
||||
| boundary detection. Currently, sentence segmentation is based on the
|
||||
| dependency parse, which doesn't always produce ideal results. The custom
|
||||
| logic should therefore be applied #[strong after] tokenization, but
|
||||
| #[strong before] the dependency parsing – this way, the parser can also
|
||||
| take advantage of the sentence boundaries.
|
||||
|
||||
+code.
|
||||
def sbd_component(doc):
|
||||
for i, token in enumerate(doc[:-2]):
|
||||
# define sentence start if period + titlecase token
|
||||
if token.text == '.' and doc[i+1].is_title:
|
||||
doc[i+1].sent_start = True
|
||||
return doc
|
||||
|
||||
nlp = spacy.load('en')
|
||||
nlp.add_pipe(sbd_component, before='parser') # insert before the parser
|
||||
|
||||
+h(4, "component-example2")
|
||||
| Example: Pipeline component for entity matching and tagging with
|
||||
| custom attributes
|
||||
|
||||
p
|
||||
| This example shows how to create a spaCy extension that takes a
|
||||
| terminology list (in this case, single- and multi-word company names),
|
||||
| matches the occurences in a document, labels them as #[code ORG] entities,
|
||||
| merges the tokens and sets custom #[code is_tech_org] and
|
||||
| #[code has_tech_org] attributes. For efficient matching, the example uses
|
||||
| the #[+api("phrasematcher") #[code PhraseMatcher]] which accepts
|
||||
| #[code Doc] objects as match patterns and works well for large
|
||||
| terminology lists. It also ensures your patterns will always match, even
|
||||
| when you customise spaCy's tokenization rules. When you call #[code nlp]
|
||||
| on a text, the custom pipeline component is applied to the #[code Doc]
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_entities.py", false, 500)
|
||||
|
||||
p
|
||||
| Wrapping this functionality in a
|
||||
| pipeline component allows you to reuse the module with different
|
||||
| settings, and have all pre-processing taken care of when you call
|
||||
| #[code nlp] on your text and receive a #[code Doc] object.
|
||||
|
||||
+h(4, "component-example3")
|
||||
| Example: Pipeline component for GPE entities and country meta data via a
|
||||
| REST API
|
||||
|
||||
p
|
||||
| This example shows the implementation of a pipeline component
|
||||
| that fetches country meta data via the
|
||||
| #[+a("https://restcountries.eu") REST Countries API] sets entity
|
||||
| annotations for countries, merges entities into one token and
|
||||
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||
| #[code Token] – for example, the capital, latitude/longitude coordinates
|
||||
| and even the country flag.
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_countries_api.py", false, 500)
|
||||
|
||||
p
|
||||
| In this case, all data can be fetched on initialisation in one request.
|
||||
| However, if you're working with text that contains incomplete country
|
||||
| names, spelling mistakes or foreign-language versions, you could also
|
||||
| implement a #[code like_country]-style getter function that makes a
|
||||
| request to the search API endpoint and returns the best-matching
|
||||
| result.
|
||||
|
||||
+h(4, "custom-components-usage-ideas") Other usage ideas
|
||||
|
||||
+list
|
||||
+item
|
||||
| #[strong Adding new features and hooking in models]. For example,
|
||||
| a sentiment analysis model, or your preferred solution for
|
||||
| lemmatization or sentiment analysis. spaCy's built-in tagger,
|
||||
| parser and entity recognizer respect annotations that were already
|
||||
| set on the #[code Doc] in a previous step of the pipeline.
|
||||
+item
|
||||
| #[strong Integrating other libraries and APIs]. For example, your
|
||||
| pipeline component can write additional information and data
|
||||
| directly to the #[code Doc] or #[code Token] as custom attributes,
|
||||
| while making sure no information is lost in the process. This can
|
||||
| be output generated by other libraries and models, or an external
|
||||
| service with a REST API.
|
||||
+item
|
||||
| #[strong Debugging and logging]. For example, a component which
|
||||
| stores and/or exports relevant information about the current state
|
||||
| of the processed document, and insert it at any point of your
|
||||
| pipeline.
|
||||
|
||||
+infobox("Developing third-party extensions")
|
||||
| The new pipeline management and custom attributes finally make it easy
|
||||
| to develop your own spaCy extensions and plugins and share them with
|
||||
| others. Extensions can claim their own #[code ._] namespace and exist as
|
||||
| standalone packages. If you're developing a tool or library and want to
|
||||
| make it easy for others to use it with spaCy and add it to their
|
||||
| pipeline, all you have to do is expose a function that takes a
|
||||
| #[code Doc], modifies it and returns it. For more details and
|
||||
| #[strong best practices], see the section on
|
||||
| #[+a("#extensions") developing spaCy extensions].
|
||||
|
||||
+h(3, "custom-components-user-hooks") User hooks
|
||||
|
||||
p
|
||||
| While it's generally recommended to use the #[code Doc._], #[code Span._]
|
||||
|
|
|
@ -1,126 +0,0 @@
|
|||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > EXAMPLES
|
||||
|
||||
p
|
||||
| To see real-world examples of pipeline factories and components in action,
|
||||
| you can have a look at the source of spaCy's built-in components, e.g.
|
||||
| the #[+api("tagger") #[code Tagger]], #[+api("parser") #[code Parser]] or
|
||||
| #[+api("entityrecognizer") #[code EntityRecongnizer]].
|
||||
|
||||
+h(3, "example1") Example: Custom sentence segmentation logic
|
||||
|
||||
p
|
||||
| Let's say you want to implement custom logic to improve spaCy's sentence
|
||||
| boundary detection. Currently, sentence segmentation is based on the
|
||||
| dependency parse, which doesn't always produce ideal results. The custom
|
||||
| logic should therefore be applied #[strong after] tokenization, but
|
||||
| #[strong before] the dependency parsing – this way, the parser can also
|
||||
| take advantage of the sentence boundaries.
|
||||
|
||||
+code.
|
||||
def sbd_component(doc):
|
||||
for i, token in enumerate(doc[:-2]):
|
||||
# define sentence start if period + titlecase token
|
||||
if token.text == '.' and doc[i+1].is_title:
|
||||
doc[i+1].sent_start = True
|
||||
return doc
|
||||
|
||||
p
|
||||
| In this case, we simply want to add the component to the existing
|
||||
| pipeline of the English model. We can do this by inserting it at index 0
|
||||
| of #[code nlp.pipeline]:
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.insert(0, sbd_component)
|
||||
|
||||
p
|
||||
| When you call #[code nlp] on some text, spaCy will tokenize it to create
|
||||
| a #[code Doc] object, and first call #[code sbd_component] on it, followed
|
||||
| by the model's default pipeline.
|
||||
|
||||
+h(3, "example2") Example: Sentiment model
|
||||
|
||||
p
|
||||
| Let's say you have trained your own document sentiment model on English
|
||||
| text. After tokenization, you want spaCy to first execute the
|
||||
| #[strong default tensorizer], followed by a custom
|
||||
| #[strong sentiment component] that adds a #[code .sentiment]
|
||||
| property to the #[code Doc], containing your model's sentiment precition.
|
||||
|
||||
p
|
||||
| Your component class will have a #[code from_disk()] method that spaCy
|
||||
| calls to load the model data. When called, the component will compute
|
||||
| the sentiment score, add it to the #[code Doc] and return the modified
|
||||
| document. Optionally, the component can include an #[code update()] method
|
||||
| to allow training the model.
|
||||
|
||||
+code.
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
class SentimentComponent(object):
|
||||
def __init__(self, vocab):
|
||||
self.weights = None
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.sentiment = sum(self.weights*doc.vector) # set sentiment property
|
||||
return doc
|
||||
|
||||
def from_disk(self, path): # path = model path + factory ID ('sentiment')
|
||||
self.weights = pickle.load(Path(path) / 'weights.bin') # load weights
|
||||
return self
|
||||
|
||||
def update(self, doc, gold): # update weights – allows training!
|
||||
prediction = sum(self.weights*doc.vector)
|
||||
self.weights -= 0.001*doc.vector*(prediction-gold.sentiment)
|
||||
|
||||
p
|
||||
| The factory will initialise the component with the #[code Vocab] object.
|
||||
| To be able to add it to your model's pipeline as #[code 'sentiment'],
|
||||
| it also needs to be registered via
|
||||
| #[+api("spacy#set_factory") #[code set_factory()]].
|
||||
|
||||
+code.
|
||||
def sentiment_factory(vocab):
|
||||
component = SentimentComponent(vocab) # initialise component
|
||||
return component
|
||||
|
||||
spacy.set_factory('sentiment', sentiment_factory)
|
||||
|
||||
p
|
||||
| The above code should be #[strong shipped with your model]. You can use
|
||||
| the #[+api("cli#package") #[code package]] command to create all required
|
||||
| files and directories. The model package will include an
|
||||
| #[+src(gh("spacy-dev-resources", "templates/model/en_model_name/__init__.py")) #[code __init__.py]]
|
||||
| with a #[code load()] method, that will initialise the language class with
|
||||
| the model's pipeline and call the #[code from_disk()] method to load
|
||||
| the model data.
|
||||
|
||||
p
|
||||
| In the model package's meta.json, specify the language class and pipeline
|
||||
| IDs:
|
||||
|
||||
+code("meta.json (excerpt)", "json").
|
||||
{
|
||||
"name": "sentiment_model",
|
||||
"lang": "en",
|
||||
"version": "1.0.0",
|
||||
"spacy_version": ">=2.0.0,<3.0.0",
|
||||
"pipeline": ["tensorizer", "sentiment"]
|
||||
}
|
||||
|
||||
p
|
||||
| When you load your new model, spaCy will call the model's #[code load()]
|
||||
| method. This will return a #[code Language] object with a pipeline
|
||||
| containing the default tensorizer, and the sentiment component returned
|
||||
| by your custom #[code "sentiment"] factory.
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en_sentiment_model')
|
||||
doc = nlp(u'I love pizza')
|
||||
assert doc.sentiment
|
||||
|
||||
+infobox("Saving and loading models")
|
||||
| For more information and a detailed guide on how to package your model,
|
||||
| see the documentation on
|
||||
| #[+a("/usage/training#saving-loading") saving and loading models].
|
|
@ -1,3 +1,110 @@
|
|||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > DEVELOPING EXTENSIONS
|
||||
|
||||
+under-construction
|
||||
p
|
||||
| We're very excited about all the new possibilities for community
|
||||
| extensions and plugins in spaCy v2.0, and we can't wait to see what
|
||||
| you build with it! To get you started, here are a few tips, tricks and
|
||||
| best practices:
|
||||
|
||||
+list
|
||||
+item
|
||||
| Make sure to choose a #[strong descriptive and specific name] for
|
||||
| your pipeline component class, and set it as its #[code name]
|
||||
| attribute. Avoid names that are too common or likely to clash with
|
||||
| built-in or a user's other custom components. While it's fine to call
|
||||
| your package "spacy_my_extension", avoid component names including
|
||||
| "spacy", since this can easily lead to confusion.
|
||||
|
||||
+code-wrapper
|
||||
+code-new name = 'myapp_lemmatizer'
|
||||
+code-old name = 'lemmatizer'
|
||||
|
||||
+item
|
||||
| When writing to #[code Doc], #[code Token] or #[code Span] objects,
|
||||
| #[strong use getter functions] wherever possible, and avoid setting
|
||||
| values explicitly. Tokens and spans don't own any data themselves,
|
||||
| so you should provide a function that allows them to compute the
|
||||
| values instead of writing static properties to individual objects.
|
||||
|
||||
+code-wrapper
|
||||
+code-new.
|
||||
is_fruit = lambda token: token.text in ('apple', 'orange')
|
||||
Token.set_extension('is_fruit', getter=is_fruit)
|
||||
+code-old.
|
||||
token._.set_extension('is_fruit', default=False)
|
||||
if token.text in ('apple', 'orange'):
|
||||
token._.set('is_fruit', True)
|
||||
|
||||
+item
|
||||
| Always add your custom attributes to the #[strong global] #[code Doc]
|
||||
| #[code Token] or #[code Span] objects, not a particular instance of
|
||||
| them. Add the attributes #[strong as early as possible], e.g. in
|
||||
| your extension's #[code __init__] method or in the global scope of
|
||||
| your module. This means that in the case of namespace collisions,
|
||||
| the user will see an error immediately, not just when they run their
|
||||
| pipeline.
|
||||
|
||||
+code-wrapper
|
||||
+code-new.
|
||||
from spacy.tokens import Doc
|
||||
def __init__(attr='my_attr'):
|
||||
Doc.set_extension(attr, getter=self.get_doc_attr)
|
||||
+code-old.
|
||||
def __call__(doc):
|
||||
doc.set_extension('my_attr', getter=self.get_doc_attr)
|
||||
|
||||
+item
|
||||
| If your extension is setting properties on the #[code Doc],
|
||||
| #[code Token] or #[code Span], include an option to
|
||||
| #[strong let the user to change those attribute names]. This makes
|
||||
| it easier to avoid namespace collisions and accommodate users with
|
||||
| different naming preferences. We recommend adding an #[code attrs]
|
||||
| argument to the #[code __init__] method of your class so you can
|
||||
| write the names to class attributes and reuse them across your
|
||||
| component.
|
||||
|
||||
+code-wrapper
|
||||
+code-new Doc.set_extension(self.doc_attr, default='some value')
|
||||
+code-old Doc.set_extension('my_doc_attr', default='some value')
|
||||
|
||||
+item
|
||||
| Ideally, extensions should be #[strong standalone packages] with
|
||||
| spaCy and optionally, other packages specified as a dependency. They
|
||||
| can freely assign to their own #[code ._] namespace, but should stick
|
||||
| to that. If your extension's only job is to provide a better
|
||||
| #[code .similarity] implementation, and your docs state this
|
||||
| explicitly, there's no problem with writing to the
|
||||
| #[+a("#custom-components-user-hooks") #[code user_hooks]], and
|
||||
| overwriting spaCy's built-in method. However, a third-party
|
||||
| extension should #[strong never silently overwrite built-ins], or
|
||||
| attributes set by other extensions.
|
||||
|
||||
+item
|
||||
| If you're looking to publish a model that depends on a custom
|
||||
| pipeline component, you can either #[strong require it] in the model
|
||||
| package's dependencies, or – if the component is specific and
|
||||
| lightweight – choose to #[strong ship it with your model package]
|
||||
| and add it to the #[code Language] instance returned by the
|
||||
| model's #[code load()] method. For examples of this, check out the
|
||||
| implementations of spaCy's
|
||||
| #[+api("util#load_model_from_init_py") #[code load_model_from_init_py()]]
|
||||
| and #[+api("util#load_model_from_path") #[code load_model_from_path()]]
|
||||
| utility functions.
|
||||
|
||||
+code-wrapper
|
||||
+code-new.
|
||||
nlp.add_pipe(my_custom_component)
|
||||
return nlp.from_disk(model_path)
|
||||
|
||||
+item
|
||||
| Once you're ready to share your extension with others, make sure to
|
||||
| #[strong add docs and installation instructions] (you can
|
||||
| always link to this page for more info). Make it easy for others to
|
||||
| install and use your extension, for example by uploading it to
|
||||
| #[+a("https://pypi.python.org") PyPi]. If you're sharing your code on
|
||||
| GitHub, don't forget to tag it
|
||||
| with #[+a("https://github.com/search?q=topic%3Aspacy") #[code spacy]]
|
||||
| and #[+a("https://github.com/search?q=topic%3Aspacy-pipeline") #[code spacy-pipeline]]
|
||||
| to help people find it. If you post it on Twitter, feel free to tag
|
||||
| #[+a("https://twitter.com/" + SOCIAL.twitter) @#{SOCIAL.twitter}]
|
||||
| so we can check it out.
|
||||
|
|
|
@ -21,7 +21,7 @@ p
|
|||
|
||||
+code.
|
||||
import spacy
|
||||
from spacy.tokens.span import Span
|
||||
from spacy.tokens import Span
|
||||
|
||||
text = u'Netflix is hiring a new VP of global policy'
|
||||
|
||||
|
|
|
@ -175,7 +175,7 @@ p
|
|||
|
||||
+code.
|
||||
import spacy
|
||||
from spacy.tokens.doc import Doc
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
nlp = spacy.load('en')
|
||||
|
|
|
@ -61,7 +61,7 @@ p
|
|||
output_path.open('w', encoding='utf-8').write(svg)
|
||||
|
||||
p
|
||||
| The above code will generate the dependency visualizations and them to
|
||||
| The above code will generate the dependency visualizations as to
|
||||
| two files, #[code This-is-an-example.svg] and #[code This-is-another-one.svg].
|
||||
|
||||
|
||||
|
|
|
@ -2,6 +2,44 @@
|
|||
|
||||
include ../_includes/_mixins
|
||||
|
||||
+section("pipeline")
|
||||
+h(3, "custom-components-entities") Custom pipeline components and attribute extensions
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| This example shows the implementation of a pipeline component
|
||||
| that sets entity annotations based on a list of single or
|
||||
| multiple-word company names, merges entities into one token and
|
||||
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||
| #[code Token].
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_entities.py")
|
||||
|
||||
+h(3, "custom-components-api")
|
||||
| Custom pipeline components and attribute extensions via a REST API
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| This example shows the implementation of a pipeline component
|
||||
| that fetches country meta data via the
|
||||
| #[+a("https://restcountries.eu") REST Countries API] sets entity
|
||||
| annotations for countries, merges entities into one token and
|
||||
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||
| #[code Token] – for example, the capital, latitude/longitude
|
||||
| coordinates and the country flag.
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_countries_api.py")
|
||||
|
||||
+h(3, "custom-components-attr-methods") Custom method extensions
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| A collection of snippets showing examples of extensions adding
|
||||
| custom methods to the #[code Doc], #[code Token] and
|
||||
| #[code Span].
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_attr_methods.py")
|
||||
|
||||
+section("matching")
|
||||
+h(3, "matcher") Using spaCy's rule-based matcher
|
||||
|
||||
|
|
|
@ -12,6 +12,10 @@ include _spacy-101/_pipelines
|
|||
+h(2, "custom-components") Creating custom pipeline components
|
||||
include _processing-pipelines/_custom-components
|
||||
|
||||
+section("extensions")
|
||||
+h(2, "extensions") Developing spaCy extensions
|
||||
include _processing-pipelines/_extensions
|
||||
|
||||
+section("multithreading")
|
||||
+h(2, "multithreading") Multi-threading
|
||||
include _processing-pipelines/_multithreading
|
||||
|
@ -19,7 +23,3 @@ include _spacy-101/_pipelines
|
|||
+section("serialization")
|
||||
+h(2, "serialization") Serialization
|
||||
include _processing-pipelines/_serialization
|
||||
|
||||
+section("extensions")
|
||||
+h(2, "extensions") Developing spaCy extensions
|
||||
include _processing-pipelines/_extensions
|
||||
|
|
|
@ -102,30 +102,36 @@ p
|
|||
+h(3, "features-pipelines") Improved processing pipelines
|
||||
|
||||
+aside-code("Example").
|
||||
# Modify an existing pipeline
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.append(my_component)
|
||||
# Set custom attributes
|
||||
Doc.set_extension('my_attr', default=False)
|
||||
Token.set_extension('my_attr', getter=my_token_getter)
|
||||
assert doc._.my_attr, token._.my_attr
|
||||
|
||||
# Register a factory to create a component
|
||||
spacy.set_factory('my_factory', my_factory)
|
||||
nlp = Language(pipeline=['my_factory', mycomponent])
|
||||
# Add components to the pipeline
|
||||
my_component = lambda doc: doc
|
||||
nlp.add_pipe(my_component)
|
||||
|
||||
p
|
||||
| It's now much easier to #[strong customise the pipeline] with your own
|
||||
| components, functions that receive a #[code Doc] object, modify and
|
||||
| return it. If your component is stateful, you can define and register a
|
||||
| factory which receives the shared #[code Vocab] object and returns a
|
||||
| component. spaCy's default components can be added to your pipeline by
|
||||
| using their string IDs. This way, you won't have to worry about finding
|
||||
| and implementing them – simply add #[code "tagger"] to the pipeline,
|
||||
| and spaCy will know what to do.
|
||||
| components: functions that receive a #[code Doc] object, modify and
|
||||
| return it. Extensions let you write any
|
||||
| #[strong attributes, properties and methods] to the #[code Doc],
|
||||
| #[code Token] and #[code Span]. You can add data, implement new
|
||||
| features, integrate other libraries with spaCy or plug in your own
|
||||
| machine learning models.
|
||||
|
||||
+image
|
||||
include ../assets/img/pipeline.svg
|
||||
|
||||
+infobox
|
||||
| #[+label-inline API:] #[+api("language") #[code Language]]
|
||||
| #[+label-inline Usage:] #[+a("/usage/language-processing-pipeline") Processing text]
|
||||
| #[+label-inline API:] #[+api("language") #[code Language]],
|
||||
| #[+api("doc#set_extension") #[code Doc.set_extension]],
|
||||
| #[+api("span#set_extension") #[code Span.set_extension]],
|
||||
| #[+api("token#set_extension") #[code Token.set_extension]]
|
||||
| #[+label-inline Usage:]
|
||||
| #[+a("/usage/processing-pipelines") Processing pipelines]
|
||||
| #[+label-inline Code:]
|
||||
| #[+src("/usage/examples#section-pipeline") Pipeline examples]
|
||||
|
||||
+h(3, "features-text-classification") Text classification
|
||||
|
||||
|
@ -478,15 +484,16 @@ p
|
|||
p
|
||||
| If you've been using custom pipeline components, check out the new
|
||||
| guide on #[+a("/usage/language-processing-pipelines") processing pipelines].
|
||||
| Appending functions to the pipeline still works – but you might be able
|
||||
| to make this more convenient by registering "component factories".
|
||||
| Components of the processing pipeline can now be disabled by passing a
|
||||
| list of their names to the #[code disable] keyword argument on loading
|
||||
| or processing.
|
||||
| Appending functions to the pipeline still works – but the
|
||||
| #[+api("language#add_pipe") #[code add_pipe]] methods now makes this
|
||||
| much more convenient. Components of the processing pipeline can now
|
||||
| be disabled by passing a list of their names to the #[code disable]
|
||||
| keyword argument on load, or by simply demoving them from the
|
||||
| pipeline alltogether.
|
||||
|
||||
+code-new.
|
||||
nlp = spacy.load('en', disable=['tagger', 'ner'])
|
||||
doc = nlp(u"I don't want parsed", disable=['parser'])
|
||||
nlp.remove_pipe('parser')
|
||||
+code-old.
|
||||
nlp = spacy.load('en', tagger=False, entity=False)
|
||||
doc = nlp(u"I don't want parsed", parse=False)
|
||||
|
|
Loading…
Reference in New Issue
Block a user