mirror of
https://github.com/explosion/spaCy.git
synced 2025-05-03 07:13:40 +03:00
Update rule-based matching docs
This commit is contained in:
parent
3b67eabfea
commit
37f755897f
|
@ -75,6 +75,131 @@ p
|
||||||
| other pattern types. You shouldn't have to create different matchers for
|
| other pattern types. You shouldn't have to create different matchers for
|
||||||
| each of those processes.
|
| each of those processes.
|
||||||
|
|
||||||
|
+h(4, "adding-patterns-attributes") Available token attributes
|
||||||
|
|
||||||
|
p
|
||||||
|
| The available token pattern keys are uppercase versions of the
|
||||||
|
| #[+api("token#attributes") #[code Token] attributes]. The most relevant
|
||||||
|
| ones for rule-based matching are:
|
||||||
|
|
||||||
|
+table(["Attribute", "Description"])
|
||||||
|
+row
|
||||||
|
+cell #[code ORTH]
|
||||||
|
+cell The exact verbatim text of a token.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap #[code LOWER], #[code UPPER]
|
||||||
|
+cell The lowercase, uppercase form of the token text.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap #[code IS_ALPHA], #[code IS_ASCII], #[code IS_DIGIT]
|
||||||
|
+cell
|
||||||
|
| Token text consists of alphanumeric characters, ASCII characters,
|
||||||
|
| digits.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap #[code IS_LOWER], #[code IS_UPPER], #[code IS_TITLE]
|
||||||
|
+cell Token text is in lowercase, uppercase, titlecase.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap #[code IS_PUNCT], #[code IS_SPACE], #[code IS_STOP]
|
||||||
|
+cell Token is punctuation, whitespace, stop word.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap #[code LIKE_NUM], #[code LIKE_URL], #[code LIKE_EMAIL]
|
||||||
|
+cell Token text resembles a number, URL, email.
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell.u-nowrap
|
||||||
|
| #[code POS], #[code TAG], #[code DEP], #[code LEMMA],
|
||||||
|
| #[code SHAPE]
|
||||||
|
+cell
|
||||||
|
| The token's simple and extended part-of-speech tag, dependency
|
||||||
|
| label, lemma, shape.
|
||||||
|
|
||||||
|
+h(4, "adding-patterns-wildcard") Using wildcard token patterns
|
||||||
|
+tag-new(2)
|
||||||
|
|
||||||
|
p
|
||||||
|
| While the token attributes offer many options to write highly specific
|
||||||
|
| patterns, you can also use an empty dictionary, #[code {}] as a wildcard
|
||||||
|
| representing #[strong any token]. This is useful if you know the context
|
||||||
|
| of what you're trying to match, but very little about the specific token
|
||||||
|
| and its characters. For example, let's say you're trying to extract
|
||||||
|
| people's user names from your data. All you know is that they are listed
|
||||||
|
| as "User name: {username}". The name itself may contain any character,
|
||||||
|
| but no whitespace – so you'll know it will be handled as one token.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
[{'ORTH': 'User'}, {'ORTH': 'name'}, {'ORTH': ':'}, {}]
|
||||||
|
|
||||||
|
+h(4, "quantifiers") Using operators and quantifiers
|
||||||
|
|
||||||
|
p
|
||||||
|
| The matcher also lets you use quantifiers, specified as the #[code 'OP']
|
||||||
|
| key. Quantifiers let you define sequences of tokens to be mached, e.g.
|
||||||
|
| one or more punctuation marks, or specify optional tokens. Note that there
|
||||||
|
| are no nested or scoped quantifiers – instead, you can build those
|
||||||
|
| behaviours with #[code on_match] callbacks.
|
||||||
|
|
||||||
|
+aside("Problems with quantifiers")
|
||||||
|
| Using quantifiers may lead to unexpected results when matching
|
||||||
|
| variable-length patterns, for example if the next token would also be
|
||||||
|
| matched by the previous token. This problem should be resolved in a future
|
||||||
|
| release. For more information, see
|
||||||
|
| #[+a(gh("spaCy") + "/issues/864") this issue].
|
||||||
|
|
||||||
|
+table([ "OP", "Description", "Example"])
|
||||||
|
+row
|
||||||
|
+cell #[code !]
|
||||||
|
+cell match exactly 0 times
|
||||||
|
+cell negation
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code *]
|
||||||
|
+cell match 0 or more times
|
||||||
|
+cell optional, variable number
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code +]
|
||||||
|
+cell match 1 or more times
|
||||||
|
+cell mandatory, variable number
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code ?]
|
||||||
|
+cell match 0 or 1 times
|
||||||
|
+cell optional, max one
|
||||||
|
|
||||||
|
+h(3, "adding-phrase-patterns") Adding phrase patterns
|
||||||
|
|
||||||
|
p
|
||||||
|
| If you need to match large terminology lists, you can also use the
|
||||||
|
| #[+api("phrasematcher") #[code PhraseMatcher]] and create
|
||||||
|
| #[+api("doc") #[code Doc]] objects instead of token patterns, which is
|
||||||
|
| much more efficient overall. The #[code Doc] patterns can contain single
|
||||||
|
| or multiple tokens.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
import spacy
|
||||||
|
from spacy.matcher import PhraseMatcher
|
||||||
|
|
||||||
|
nlp = spacy.load('en')
|
||||||
|
matcher = PhraseMatcher(nlp.vocab)
|
||||||
|
terminology_list = ['Barack Obama', 'Angela Merkel', 'Washington, D.C.']
|
||||||
|
patterns = [nlp(text) for text in terminology_list]
|
||||||
|
matcher.add('TerminologyList', None, *patterns)
|
||||||
|
|
||||||
|
doc = nlp(u"German Chancellor Angela Merkel and US President Barack Obama "
|
||||||
|
u"converse in the Oval Office inside the White House in Washington, D.C.")
|
||||||
|
matches = matcher(doc)
|
||||||
|
|
||||||
|
p
|
||||||
|
| Since spaCy is used for processing both the patterns and the text to be
|
||||||
|
| matched, you won't have to worry about specific tokenization – for
|
||||||
|
| example, you can simply pass in #[code nlp(u"Washington, D.C.")] and
|
||||||
|
| won't have to write a complex token pattern covering the exact
|
||||||
|
| tokenization of the term.
|
||||||
|
|
||||||
+h(3, "on_match") Adding #[code on_match] rules
|
+h(3, "on_match") Adding #[code on_match] rules
|
||||||
|
|
||||||
p
|
p
|
||||||
|
@ -183,43 +308,6 @@ p
|
||||||
| A list of #[code (match_id, start, end)] tuples, describing the
|
| A list of #[code (match_id, start, end)] tuples, describing the
|
||||||
| matches. A match tuple describes a span #[code doc[start:end]].
|
| matches. A match tuple describes a span #[code doc[start:end]].
|
||||||
|
|
||||||
+h(3, "quantifiers") Using operators and quantifiers
|
|
||||||
|
|
||||||
p
|
|
||||||
| The matcher also lets you use quantifiers, specified as the #[code 'OP']
|
|
||||||
| key. Quantifiers let you define sequences of tokens to be mached, e.g.
|
|
||||||
| one or more punctuation marks, or specify optional tokens. Note that there
|
|
||||||
| are no nested or scoped quantifiers – instead, you can build those
|
|
||||||
| behaviours with #[code on_match] callbacks.
|
|
||||||
|
|
||||||
+aside("Problems with quantifiers")
|
|
||||||
| Using quantifiers may lead to unexpected results when matching
|
|
||||||
| variable-length patterns, for example if the next token would also be
|
|
||||||
| matched by the previous token. This problem should be resolved in a future
|
|
||||||
| release. For more information, see
|
|
||||||
| #[+a(gh("spaCy") + "/issues/864") this issue].
|
|
||||||
|
|
||||||
+table([ "OP", "Description", "Example"])
|
|
||||||
+row
|
|
||||||
+cell #[code !]
|
|
||||||
+cell match exactly 0 times
|
|
||||||
+cell negation
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell #[code *]
|
|
||||||
+cell match 0 or more times
|
|
||||||
+cell optional, variable number
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell #[code +]
|
|
||||||
+cell match 1 or more times
|
|
||||||
+cell mandatory, variable number
|
|
||||||
|
|
||||||
+row
|
|
||||||
+cell #[code ?]
|
|
||||||
+cell match 0 or 1 times
|
|
||||||
+cell optional, max one
|
|
||||||
|
|
||||||
+h(3, "example1") Example: Using linguistic annotations
|
+h(3, "example1") Example: Using linguistic annotations
|
||||||
|
|
||||||
p
|
p
|
||||||
|
|
Loading…
Reference in New Issue
Block a user