diff --git a/bin/ud/run_eval.py b/bin/ud/run_eval.py index 2da476721..3a30c0ee9 100644 --- a/bin/ud/run_eval.py +++ b/bin/ud/run_eval.py @@ -12,11 +12,11 @@ from ud_train import write_conllu from spacy.lang.lex_attrs import word_shape from spacy.util import get_lang_class -# All languages in spaCy - in UD format (note that Norwegian is 'no' instead of 'nb') -ALL_LANGUAGES = ("af, ar, bg, bn, ca, cs, da, de, el, en, es, et, fa, fi, fr," - "ga, he, hi, hr, hu, id, is, it, ja, kn, ko, lt, lv, mr, no," +# All languages in spaCy format (note that Norwegian is 'no' in UD - gets remapped later) +ALL_LANGUAGES = ("af, ar, bg, bn, ca, cs, da, de, el, en, es, et, eu, fa, fi, fr," + "ga, gu, he, hi, hr, hu, hy, id, is, it, ja, kn, ko, lb, lij, lt, lv, ml, mr, nb," "nl, pl, pt, ro, ru, si, sk, sl, sq, sr, sv, ta, te, th, tl," - "tr, tt, uk, ur, vi, zh") + "tr, tt, uk, ur, vi, yo, zh") # Non-parsing tasks that will be evaluated (works for default models) EVAL_NO_PARSE = ['Tokens', 'Words', 'Lemmas', 'Sentences', 'Feats'] @@ -251,39 +251,43 @@ def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_train # initialize all models with the multi-lang model for lang in languages: - models[lang] = [multi] if multi else [] - # add default models if we don't want to evaluate parsing info - if not check_parse: - # Norwegian is 'nb' in spaCy but 'no' in the UD corpora - if lang == 'no': - models['no'].append(load_default_model_sentencizer('nb')) - else: - models[lang].append(load_default_model_sentencizer(lang)) + UD_lang = lang + # Norwegian is 'nb' in spaCy but 'no' in the UD corpora + if lang == "nb": + UD_lang = "no" + try: + models[UD_lang] = [multi] if multi else [] + # add default models if we don't want to evaluate parsing info + if not check_parse: + models[UD_lang].append(load_default_model_sentencizer(lang)) + except: + print(f"Exception initializing lang {lang} - skipping") # language-specific trained models if not exclude_trained_models: - if 'de' in models: - models['de'].append(load_model('de_core_news_sm')) - models['de'].append(load_model('de_core_news_md')) - if 'el' in models: - models['el'].append(load_model('el_core_news_sm')) - models['el'].append(load_model('el_core_news_md')) - if 'en' in models: - models['en'].append(load_model('en_core_web_sm')) - models['en'].append(load_model('en_core_web_md')) - models['en'].append(load_model('en_core_web_lg')) - if 'es' in models: - models['es'].append(load_model('es_core_news_sm')) - models['es'].append(load_model('es_core_news_md')) - if 'fr' in models: - models['fr'].append(load_model('fr_core_news_sm')) - models['fr'].append(load_model('fr_core_news_md')) - if 'it' in models: - models['it'].append(load_model('it_core_news_sm')) - if 'nl' in models: - models['nl'].append(load_model('nl_core_news_sm')) - if 'pt' in models: - models['pt'].append(load_model('pt_core_news_sm')) + news_languages = ["da", "de", "el", "es", "fr", "it", "ja", "lt", "nb", "nl", "pl", "pt", "ro"] + news_languages = ["nb"] + web_languages = ["en", "zh"] + sizes = ["sm", "md", "lg"] + for lang in web_languages: + UD_lang = lang + for size in sizes: + model_name = f'{lang}_core_web_{size}' + try: + models[UD_lang].append(load_model(model_name)) + except Exception as e: + print(f"Error loading {model_name}: {e}") + + for lang in news_languages: + UD_lang = lang + if lang == "nb": + UD_lang = "no" + for size in sizes: + model_name = f'{lang}_core_news_{size}' + try: + models[UD_lang].append(load_model(model_name)) + except Exception as e: + print(f"Error loading {model_name}: {e}") with out_path.open(mode='w', encoding='utf-8') as out_file: run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks) diff --git a/bin/ud/ud_train.py b/bin/ud/ud_train.py index 88c534d0a..ac5987aa4 100644 --- a/bin/ud/ud_train.py +++ b/bin/ud/ud_train.py @@ -303,7 +303,9 @@ def get_token_conllu(token, i): feat_str = [] replacements = {"one": "1", "two": "2", "three": "3"} for feat in features: - if not feat.startswith("begin") and not feat.startswith("end"): + if "=" in feat: + feat_str.append(feat) + elif not feat.startswith("begin") and not feat.startswith("end"): key, value = feat.split("_", 1) value = replacements.get(value, value) feat_str.append("%s=%s" % (key, value.title()))