Revert "Revert "WIP on improving parser efficiency""

This reverts commit 532afef4a8.
This commit is contained in:
Matthew Honnibal 2017-05-23 03:06:53 -05:00
parent 532afef4a8
commit 3959d778ac
9 changed files with 119 additions and 94 deletions

View File

@ -9,6 +9,7 @@ from pathlib import Path
import dill
import tqdm
from thinc.neural.optimizers import linear_decay
from timeit import default_timer as timer
from ..tokens.doc import Doc
from ..scorer import Scorer
@ -81,8 +82,13 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
batch_size = min(batch_size, max_batch_size)
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
with nlp.use_params(optimizer.averages):
start = timer()
scorer = nlp.evaluate(corpus.dev_docs(nlp))
print_progress(i, {}, scorer.scores)
end = timer()
n_words = scorer.tokens.tp + scorer.tokens.fn
assert n_words != 0
wps = n_words / (end-start)
print_progress(i, {}, scorer.scores, wps=wps)
with (output_path / 'model.bin').open('wb') as file_:
with nlp.use_params(optimizer.averages):
dill.dump(nlp, file_, -1)
@ -98,14 +104,14 @@ def _render_parses(i, to_render):
file_.write(html)
def print_progress(itn, losses, dev_scores):
# TODO: Fix!
def print_progress(itn, losses, dev_scores, wps=0.0):
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f']:
'ents_p', 'ents_r', 'ents_f', 'wps']:
scores[col] = 0.0
scores.update(losses)
scores.update(dev_scores)
scores[wps] = wps
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
@ -115,7 +121,8 @@ def print_progress(itn, losses, dev_scores):
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}'))
'{token_acc:.3f}',
'{wps:.1f}'))
print(tpl.format(itn, **scores))

View File

@ -144,7 +144,7 @@ def _min_edit_path(cand_words, gold_words):
class GoldCorpus(object):
"""An annotated corpus, using the JSON file format. Manages
annotations for tagging, dependency parsing and NER."""
def __init__(self, train_path, dev_path, limit=None):
def __init__(self, train_path, dev_path, gold_preproc=True, limit=None):
"""Create a GoldCorpus.
train_path (unicode or Path): File or directory of training data.
@ -184,7 +184,7 @@ class GoldCorpus(object):
n += 1
return n
def train_docs(self, nlp, shuffle=0, gold_preproc=True,
def train_docs(self, nlp, shuffle=0, gold_preproc=False,
projectivize=False):
train_tuples = self.train_tuples
if projectivize:
@ -195,7 +195,7 @@ class GoldCorpus(object):
gold_docs = self.iter_gold_docs(nlp, train_tuples, gold_preproc)
yield from gold_docs
def dev_docs(self, nlp, gold_preproc=True):
def dev_docs(self, nlp, gold_preproc=False):
gold_docs = self.iter_gold_docs(nlp, self.dev_tuples, gold_preproc)
gold_docs = nlp.preprocess_gold(gold_docs)
yield from gold_docs
@ -203,6 +203,11 @@ class GoldCorpus(object):
@classmethod
def iter_gold_docs(cls, nlp, tuples, gold_preproc):
for raw_text, paragraph_tuples in tuples:
if gold_preproc:
raw_text = None
else:
paragraph_tuples = merge_sents(paragraph_tuples)
docs = cls._make_docs(nlp, raw_text, paragraph_tuples,
gold_preproc)
golds = cls._make_golds(docs, paragraph_tuples)
@ -211,15 +216,11 @@ class GoldCorpus(object):
@classmethod
def _make_docs(cls, nlp, raw_text, paragraph_tuples, gold_preproc):
if gold_preproc:
return [Doc(nlp.vocab, words=sent_tuples[0][1])
for sent_tuples in paragraph_tuples]
elif raw_text is not None:
if raw_text is not None:
return [nlp.make_doc(raw_text)]
else:
docs = [Doc(nlp.vocab, words=sent_tuples[0][1])
return [Doc(nlp.vocab, words=sent_tuples[0][1])
for sent_tuples in paragraph_tuples]
return merge_sents(docs)
@classmethod
def _make_golds(cls, docs, paragraph_tuples):

View File

@ -334,7 +334,7 @@ class Language(object):
>>> for doc in nlp.pipe(texts, batch_size=50, n_threads=4):
>>> assert doc.is_parsed
"""
#docs = (self.make_doc(text) for text in texts)
docs = (self.make_doc(text) for text in texts)
docs = texts
for proc in self.pipeline:
name = getattr(proc, 'name', None)

View File

@ -215,7 +215,7 @@ cdef class Matcher:
"""
return len(self._patterns)
def add(self, key, on_match, *patterns):
def add(self, key, *patterns, **kwargs):
"""Add a match-rule to the matcher.
A match-rule consists of: an ID key, an on_match callback, and one or
more patterns. If the key exists, the patterns are appended to the
@ -227,6 +227,7 @@ cdef class Matcher:
descriptors can also include quantifiers. There are currently important
known problems with the quantifiers see the docs.
"""
on_match = kwargs.get('on_match', None)
for pattern in patterns:
if len(pattern) == 0:
msg = ("Cannot add pattern for zero tokens to matcher.\n"

View File

@ -167,7 +167,7 @@ class NeuralTagger(object):
self.model = model
def __call__(self, doc):
tags = self.predict(doc.tensor)
tags = self.predict([doc.tensor])
self.set_annotations([doc], tags)
def pipe(self, stream, batch_size=128, n_threads=-1):
@ -340,24 +340,6 @@ cdef class NeuralEntityRecognizer(NeuralParser):
nr_feature = 6
def get_token_ids(self, states):
cdef StateClass state
cdef int n_tokens = 6
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
for i, state in enumerate(states):
ids[i, 0] = state.c.B(0)-1
ids[i, 1] = state.c.B(0)
ids[i, 2] = state.c.B(1)
ids[i, 3] = state.c.E(0)
ids[i, 4] = state.c.E(0)-1
ids[i, 5] = state.c.E(0)+1
for j in range(6):
if ids[i, j] >= state.c.length:
ids[i, j] = -1
if ids[i, j] >= 0:
ids[i, j] += state.c.offset
return ids
cdef class BeamDependencyParser(BeamParser):
TransitionSystem = ArcEager

View File

@ -15,7 +15,7 @@ cdef class Parser:
cdef readonly object cfg
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat) nogil
int* token_ids, float* scores, int* is_valid,
const float* feat_weights, int nr_class, int nr_feat) nogil
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -19,6 +19,7 @@ import numpy.random
cimport numpy as np
from libcpp.vector cimport vector
from libcpp.pair cimport pair
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
@ -68,6 +69,9 @@ def set_debug(val):
DEBUG = val
ctypedef pair[int, StateC*] step_t
cdef class precompute_hiddens:
'''Allow a model to be "primed" by pre-computing input features in bulk.
@ -119,6 +123,9 @@ cdef class precompute_hiddens:
self._is_synchronized = True
return <float*>self._cached.data
def get_bp_hiddens(self):
return self._bp_hiddens
def __call__(self, X):
return self.begin_update(X)[0]
@ -308,7 +315,6 @@ cdef class Parser:
cdef:
precompute_hiddens state2vec
StateClass state
Pool mem
const float* feat_weights
StateC* st
vector[StateC*] next_step, this_step
@ -336,7 +342,14 @@ cdef class Parser:
cdef int i
while not next_step.empty():
for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
self._parse_step(next_step[i], token_ids, scores, is_valid,
feat_weights, nr_class, nr_feat)
free(is_valid)
free(scores)
free(token_ids)
this_step, next_step = next_step, this_step
next_step.clear()
for st in this_step:
@ -345,12 +358,8 @@ cdef class Parser:
return states
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat) nogil:
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
int* token_ids, float* scores, int* is_valid,
const float* feat_weights, int nr_class, int nr_feat) nogil:
state.set_context_tokens(token_ids, nr_feat)
sum_state_features(scores,
feat_weights, token_ids, 1, nr_feat, nr_class)
@ -359,66 +368,90 @@ cdef class Parser:
action = self.moves.c[guess]
action.do(state, action.label)
free(is_valid)
free(scores)
free(token_ids)
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
cdef:
precompute_hiddens state2vec
StateClass state
const float* feat_weights
StateC* st
vector[step_t] next_step, this_step
cdef int[:, ::1] is_valid, token_ids
cdef float[:, ::1] scores, d_scores, costs
int nr_state, nr_feat, nr_class
docs, tokvec_lists = docs_tokvecs
tokvecs = self.model[0].ops.flatten(tokvec_lists)
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
docs = [docs]
golds = [golds]
assert len(docs) == len(golds) == len(tokvec_lists)
nr_state = len(docs)
nr_feat = self.nr_feature
nr_class = self.moves.n_moves
token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
scores = numpy.zeros((nr_state, nr_class), dtype='f')
d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
costs = numpy.zeros((nr_state, nr_class), dtype='f')
tokvecs = self.model[0].ops.flatten(tokvec_lists)
cuda_stream = get_cuda_stream()
state2vec, vec2scores = self.get_batch_model(nr_state, tokvecs,
cuda_stream, drop)
golds = [self.moves.preprocess_gold(g) for g in golds]
states = self.moves.init_batch(docs)
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
drop)
todo = [(s, g) for (s, g) in zip(states, golds)
if not s.is_final() and g is not None]
cdef step_t step
cdef int i
for i, state in enumerate(states):
if not state.c.is_final():
step.first = i
step.second = state.c
next_step.push_back(step)
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, golds[i])
feat_weights = state2vec.get_feat_weights()
bp_hiddens = state2vec.get_bp_hiddens()
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
backprops = []
cdef float loss = 0.
while len(todo) >= 3:
states, golds = zip(*todo)
token_ids = self.get_token_ids(states)
vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
while next_step.size():
# Allocate these each step, so copy an be async
np_token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
np_d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
token_ids = np_token_ids
d_scores = np_d_scores
for step in next_step:
i = step.first
st = step.second
self._parse_step(st, &token_ids[i, 0],
&scores[i, 0], &is_valid[i, 0],
feat_weights, nr_class, nr_feat)
cpu_log_loss(&d_scores[i, 0],
&costs[i, 0], &is_valid[i, 0], &scores[i, 0], nr_class)
backprops.append((
get_async(cuda_stream, np_token_ids),
get_async(cuda_stream, np_d_scores)))
this_step, next_step = next_step, this_step
next_step.clear()
for step in this_step:
i = step.first
st = step.second
if not st.is_final():
next_step.push_back(step)
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0],
states[i], golds[i])
cuda_stream.synchronize()
for gpu_token_ids, gpu_d_scores in backprops:
d_features = bp_hiddens((gpu_d_scores, gpu_token_ids), sgd)
d_features *= (gpu_token_ids >= 0).reshape((nr_state, nr_feat, 1))
d_scores = self.get_batch_loss(states, golds, scores)
d_vector = bp_scores(d_scores, sgd=sgd)
if isinstance(self.model[0].ops, CupyOps) \
and not isinstance(token_ids, state2vec.ops.xp.ndarray):
# Move token_ids and d_vector to CPU, asynchronously
backprops.append((
get_async(cuda_stream, token_ids),
get_async(cuda_stream, d_vector),
bp_vector
))
else:
backprops.append((token_ids, d_vector, bp_vector))
self.transition_batch(states, scores)
todo = [st for st in todo if not st[0].is_final()]
# Tells CUDA to block, so our async copies complete.
if cuda_stream is not None:
cuda_stream.synchronize()
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
xp = state2vec.ops.xp # Handle for numpy/cupy
for token_ids, d_vector, bp_vector in backprops:
d_state_features = bp_vector(d_vector, sgd=sgd)
active_feats = token_ids * (token_ids >= 0)
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
xp = self.model[0].ops.xp
if hasattr(xp, 'scatter_add'):
xp.scatter_add(d_tokvecs,
token_ids, d_state_features * active_feats)
xp.scatter_add(d_tokvecs, gpu_token_ids, d_features)
else:
xp.add.at(d_tokvecs,
token_ids, d_state_features * active_feats)
xp.add.at(d_tokvecs, gpu_token_ids, d_features)
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
def get_batch_model(self, batch_size, tokvecs, stream, dropout):

View File

@ -17,8 +17,9 @@ def test_issue429(EN):
doc = EN('a')
matcher = Matcher(EN.vocab)
matcher.add('TEST', on_match=merge_phrases, [{'ORTH': 'a'}])
doc = EN.tokenizer('a b c')
matcher.add('TEST', [{'ORTH': 'a'}], on_match=merge_phrases)
doc = EN.make_doc('a b c')
EN.tagger(doc)
matcher(doc)
EN.entity(doc)

View File

@ -1,8 +1,8 @@
# coding: utf-8
from __future__ import unicode_literals
from ...matcher import Matcher, PhraseMatcher
from ..util import get_doc
from ..matcher import Matcher, PhraseMatcher
from .util import get_doc
import pytest