mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
* Add get_freqs script
This commit is contained in:
parent
3b5baa660f
commit
39c93116eb
97
bin/get_freqs.py
Executable file
97
bin/get_freqs.py
Executable file
|
@ -0,0 +1,97 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import plac
|
||||
import joblib
|
||||
from os import path
|
||||
import os
|
||||
import bz2
|
||||
import ujson
|
||||
import codecs
|
||||
from preshed.counter import PreshCounter
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
import spacy.en
|
||||
from spacy.strings import StringStore
|
||||
from spacy.en.attrs import ORTH
|
||||
|
||||
|
||||
def iter_comments(loc):
|
||||
with bz2.BZ2File(loc) as file_:
|
||||
for line in file_:
|
||||
yield ujson.loads(line)
|
||||
|
||||
|
||||
def null_props(string):
|
||||
return {
|
||||
'flags': 0,
|
||||
'length': len(string),
|
||||
'orth': string,
|
||||
'lower': string,
|
||||
'norm': string,
|
||||
'shape': string,
|
||||
'prefix': string,
|
||||
'suffix': string,
|
||||
'cluster': 0,
|
||||
'prob': -22,
|
||||
'sentiment': 0
|
||||
}
|
||||
|
||||
|
||||
def count_freqs(input_loc, output_loc):
|
||||
nlp = spacy.en.English(data_dir=os.environ['SPACY_DATA'], Parser=None,
|
||||
Tagger=None, Entity=None, load_vectors=False)
|
||||
nlp.vocab.lexeme_props_getter = null_props
|
||||
|
||||
counts = PreshCounter()
|
||||
tokenizer = nlp.tokenizer
|
||||
for json_comment in iter_comments(input_loc):
|
||||
doc = tokenizer(json_comment['body'])
|
||||
doc.count_by(ORTH, counts=counts)
|
||||
|
||||
with codecs.open(output_loc, 'w', 'utf8') as file_:
|
||||
for orth, freq in counts:
|
||||
string = nlp.vocab.strings[orth]
|
||||
file_.write('%d\t%s\n' % (freq, repr(string)))
|
||||
|
||||
|
||||
def parallelize(func, iterator, n_jobs):
|
||||
Parallel(n_jobs=n_jobs)(delayed(func)(*item) for item in iterator)
|
||||
|
||||
|
||||
def merge_counts(locs, out_loc):
|
||||
string_map = StringStore()
|
||||
counts = PreshCounter()
|
||||
for loc in locs:
|
||||
with codecs.open(loc, 'r', 'utf8') as file_:
|
||||
for line in file_:
|
||||
freq, word = line.strip().split('\t', 1)
|
||||
orth = string_map[word]
|
||||
counts.inc(orth, int(freq))
|
||||
with codecs.open(out_loc, 'w', 'utf8') as file_:
|
||||
for orth, count in sorted(counts, reverse=True, key=lambda item: item[1]):
|
||||
string = string_map[orth]
|
||||
file_.write('%d\t%s\n' % (count, string))
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
input_dir=("Directory of input files"),
|
||||
freqs_dir=("Directory for frequency files"),
|
||||
output_loc=("Location for output file"),
|
||||
n_jobs=("Number of workers", "option", "n", int),
|
||||
)
|
||||
def main(input_dir, freqs_dir, output_loc, n_jobs=2):
|
||||
tasks = []
|
||||
for filename in os.listdir(input_dir):
|
||||
input_path = path.join(input_dir, filename)
|
||||
output_path = path.join(freqs_dir, filename.replace('bz2', 'freq'))
|
||||
tasks.append((input_path, output_path))
|
||||
|
||||
parallelize(count_freqs, tasks, n_jobs)
|
||||
|
||||
merge_counts([out for in_, out in tasks], output_loc)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user