mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Fix imports, types and default configs
This commit is contained in:
		
							parent
							
								
									b1d83fc13e
								
							
						
					
					
						commit
						3a193eb8f1
					
				|  | @ -5,6 +5,7 @@ from thinc.types import Floats2d | ||||||
| from ...util import registry | from ...util import registry | ||||||
| from .._precomputable_affine import PrecomputableAffine | from .._precomputable_affine import PrecomputableAffine | ||||||
| from ..tb_framework import TransitionModel | from ..tb_framework import TransitionModel | ||||||
|  | from ...tokens import Doc | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @registry.architectures.register("spacy.TransitionBasedParser.v1") | @registry.architectures.register("spacy.TransitionBasedParser.v1") | ||||||
|  | @ -35,7 +36,7 @@ def build_tb_parser_model( | ||||||
|         and applying the non-linearity. |         and applying the non-linearity. | ||||||
|     * upper (optional): A feed-forward network that predicts scores from the |     * upper (optional): A feed-forward network that predicts scores from the | ||||||
|         state representation. If not present, the output from the lower model is |         state representation. If not present, the output from the lower model is | ||||||
|         ued as action scores directly. |         used as action scores directly. | ||||||
| 
 | 
 | ||||||
|     tok2vec (Model[List[Doc], List[Floats2d]]): |     tok2vec (Model[List[Doc], List[Floats2d]]): | ||||||
|         Subnetwork to map tokens into vector representations. |         Subnetwork to map tokens into vector representations. | ||||||
|  |  | ||||||
|  | @ -10,7 +10,7 @@ from .._iob import IOB | ||||||
| from ...util import registry | from ...util import registry | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @registry.architectures.register("spacy.BiluoTagger.v1") | @registry.architectures.register("spacy.BILUOTagger.v1") | ||||||
| def BiluoTagger( | def BiluoTagger( | ||||||
|     tok2vec: Model[List[Doc], List[Floats2d]] |     tok2vec: Model[List[Doc], List[Floats2d]] | ||||||
| ) -> Model[List[Doc], List[Floats2d]]: | ) -> Model[List[Doc], List[Floats2d]]: | ||||||
|  | @ -59,7 +59,7 @@ def IOBTagger( | ||||||
|     token and uses greedy decoding with transition-constraints to return a valid |     token and uses greedy decoding with transition-constraints to return a valid | ||||||
|     IOB tag sequence. |     IOB tag sequence. | ||||||
| 
 | 
 | ||||||
|     A IOB tag sequence encodes a sequence of non-overlapping labelled spans |     An IOB tag sequence encodes a sequence of non-overlapping labelled spans | ||||||
|     into tags assigned to each token. The first token of a span is given the |     into tags assigned to each token. The first token of a span is given the | ||||||
|     tag B-LABEL, and subsequent tokens are given the tag I-LABEL. |     tag B-LABEL, and subsequent tokens are given the tag I-LABEL. | ||||||
|     All other tokens are assigned the tag O. |     All other tokens are assigned the tag O. | ||||||
|  |  | ||||||
|  | @ -3,7 +3,7 @@ from thinc.api import zero_init, with_array, Softmax, chain, Model | ||||||
| from thinc.types import Floats2d | from thinc.types import Floats2d | ||||||
| 
 | 
 | ||||||
| from ...util import registry | from ...util import registry | ||||||
| from ..tokens import Doc | from ...tokens import Doc | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @registry.architectures.register("spacy.Tagger.v1") | @registry.architectures.register("spacy.Tagger.v1") | ||||||
|  |  | ||||||
|  | @ -77,7 +77,7 @@ def build_Tok2Vec_model( | ||||||
|     """Construct a tok2vec model out of embedding and encoding subnetworks. |     """Construct a tok2vec model out of embedding and encoding subnetworks. | ||||||
|     See https://explosion.ai/blog/deep-learning-formula-nlp |     See https://explosion.ai/blog/deep-learning-formula-nlp | ||||||
| 
 | 
 | ||||||
|     embed (Model[List[Doc], List[Floats2d]]): Embed tokens into context-indepdent |     embed (Model[List[Doc], List[Floats2d]]): Embed tokens into context-independent | ||||||
|         word vector representations. |         word vector representations. | ||||||
|     encode (Model[List[Floats2d], List[Floats2d]]): Encode context into the |     encode (Model[List[Floats2d], List[Floats2d]]): Encode context into the | ||||||
|         embeddings, using an architecture such as a CNN, BiLSTM or transformer. |         embeddings, using an architecture such as a CNN, BiLSTM or transformer. | ||||||
|  |  | ||||||
|  | @ -27,7 +27,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -29,7 +29,6 @@ embed_size = 300 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -29,7 +29,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 2 | maxout_pieces = 2 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -25,7 +25,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -25,7 +25,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 2 | maxout_pieces = 2 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -15,7 +15,7 @@ from .pipe import Pipe | ||||||
| 
 | 
 | ||||||
| default_model_config = """ | default_model_config = """ | ||||||
| [model] | [model] | ||||||
| @architectures = "spacy.BiluoTagger.v1" | @architectures = "spacy.BILUOTagger.v1" | ||||||
| 
 | 
 | ||||||
| [model.tok2vec] | [model.tok2vec] | ||||||
| @architectures = "spacy.HashEmbedCNN.v1" | @architectures = "spacy.HashEmbedCNN.v1" | ||||||
|  | @ -26,7 +26,6 @@ embed_size = 7000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_SIMPLE_NER_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_SIMPLE_NER_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -31,7 +31,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -48,7 +48,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -20,7 +20,6 @@ embed_size = 2000 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"] | DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"] | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -48,7 +48,6 @@ window_size = 1 | ||||||
| embed_size = 2000 | embed_size = 2000 | ||||||
| maxout_pieces = 3 | maxout_pieces = 3 | ||||||
| subword_features = true | subword_features = true | ||||||
| dropout = null |  | ||||||
| 
 | 
 | ||||||
| [components.tagger] | [components.tagger] | ||||||
| factory = "tagger" | factory = "tagger" | ||||||
|  | @ -78,7 +77,6 @@ embed_size = 5555 | ||||||
| window_size = 1 | window_size = 1 | ||||||
| maxout_pieces = 7 | maxout_pieces = 7 | ||||||
| subword_features = false | subword_features = false | ||||||
| dropout = null |  | ||||||
| """ | """ | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user