Update docs to mark experimental, rename SpanPredictor to SpanResolver

This commit is contained in:
Paul O'Leary McCann 2022-08-04 15:09:31 +09:00
parent 2e9dadfda4
commit 3a7658e052
2 changed files with 100 additions and 66 deletions

View File

@ -1,7 +1,7 @@
---
title: CoreferenceResolver
tag: class
source: spacy/pipeline/coref.py
tag: class,experimental
source: spacy-experimental/coref/coref_component.py
new: 3.4
teaser: 'Pipeline component for word-level coreference resolution'
api_base_class: /api/pipe
@ -9,6 +9,23 @@ api_string_name: coref
api_trainable: true
---
> #### Installation
>
> ```bash
> $ pip install -U spacy-experimental
> ```
<Infobox title="Important note" variant="warning">
This component not yet integrated into spaCy core, and is available via the extension package
[`spacy-experimental`](https://github.com/explosion/spacy-transformers). It
exposes the component via entry points, so if you have the package installed,
using `factory = "coref"` in your
[training config](/usage/training#config) or `nlp.add_pipe("coref")` will
work out-of-the-box.
</Infobox>
A `CoreferenceResolver` component groups tokens into clusters that refer to the
same thing. Clusters are represented as SpanGroups that start with a prefix
(`coref_clusters_` by default).

View File

@ -1,15 +1,32 @@
---
title: SpanPredictor
tag: class
source: spacy/pipeline/span_predictor.py
title: SpanResolver
tag: class,experimental
source: spacy-experimental/coref/span_resolver_component.py
new: 3.4
teaser: 'Pipeline component for resolving tokens into spans'
api_base_class: /api/pipe
api_string_name: span_predictor
api_string_name: span_resolver
api_trainable: true
---
A `SpanPredictor` component takes in tokens (represented as `Span`s of length
> #### Installation
>
> ```bash
> $ pip install -U spacy-experimental
> ```
<Infobox title="Important note" variant="warning">
This component not yet integrated into spaCy core, and is available via the extension package
[`spacy-experimental`](https://github.com/explosion/spacy-transformers). It
exposes the component via entry points, so if you have the package installed,
using `factory = "span_resolver"` in your
[training config](/usage/training#config) or `nlp.add_pipe("span_resolver")` will
work out-of-the-box.
</Infobox>
A `SpanResolver` component takes in tokens (represented as `Span`s of length
1. and resolves them into `Span`s of arbitrary length. The initial use case is
as a post-processing step on word-level [coreference resolution](/api/coref).
@ -40,39 +57,39 @@ architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy.pipeline.span_predictor import DEFAULT_SPAN_PREDICTOR_MODEL
> from spacy.pipeline.span_resolver import DEFAULT_span_resolver_MODEL
> config={
> "model": DEFAULT_SPAN_PREDICTOR_MODEL,
> "model": DEFAULT_span_resolver_MODEL,
> "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
> },
> nlp.add_pipe("span_predictor", config=config)
> nlp.add_pipe("span_resolver", config=config)
> ```
| Setting | Description |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanPredictor](/api/architectures#SpanPredictor). ~~Model~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanResolver](/api/architectures#SpanResolver). ~~Model~~ |
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_predictor.py
%%GITHUB_SPACY/spacy/pipeline/span_resolver.py
```
## SpanPredictor.\_\_init\_\_ {#init tag="method"}
## SpanResolver.\_\_init\_\_ {#init tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> span_predictor = nlp.add_pipe("span_predictor")
> span_resolver = nlp.add_pipe("span_resolver")
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_span_predictor.v1"}}
> span_predictor = nlp.add_pipe("span_predictor", config=config)
> config = {"model": {"@architectures": "my_span_resolver.v1"}}
> span_resolver = nlp.add_pipe("span_resolver", config=config)
>
> # Construction from class
> from spacy.pipeline import SpanPredictor
> span_predictor = SpanPredictor(nlp.vocab, model)
> from spacy.pipeline import SpanResolver
> span_resolver = SpanResolver(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
@ -88,7 +105,7 @@ shortcut for this and instantiate the component using its string name and
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
## SpanPredictor.\_\_call\_\_ {#call tag="method"}
## SpanResolver.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place and returned.
This usually happens under the hood when the `nlp` object is called on a text
@ -100,9 +117,9 @@ and [`set_annotations`](#set_annotations) methods.
>
> ```python
> doc = nlp("This is a sentence.")
> span_predictor = nlp.add_pipe("span_predictor")
> span_resolver = nlp.add_pipe("span_resolver")
> # This usually happens under the hood
> processed = span_predictor(doc)
> processed = span_resolver(doc)
> ```
| Name | Description |
@ -110,20 +127,20 @@ and [`set_annotations`](#set_annotations) methods.
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## SpanPredictor.pipe {#pipe tag="method"}
## SpanResolver.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/span-predictor#call) and
[`pipe`](/api/span-predictor#pipe) delegate to the
[`predict`](/api/span-predictor#predict) and
[`set_annotations`](/api/span-predictor#set_annotations) methods.
applied to the `Doc` in order. Both [`__call__`](/api/span-resolver#call) and
[`pipe`](/api/span-resolver#pipe) delegate to the
[`predict`](/api/span-resolver#predict) and
[`set_annotations`](/api/span-resolver#set_annotations) methods.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> for doc in span_predictor.pipe(docs, batch_size=50):
> span_resolver = nlp.add_pipe("span_resolver")
> for doc in span_resolver.pipe(docs, batch_size=50):
> pass
> ```
@ -134,7 +151,7 @@ applied to the `Doc` in order. Both [`__call__`](/api/span-predictor#call) and
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## SpanPredictor.initialize {#initialize tag="method"}
## SpanResolver.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
@ -148,8 +165,8 @@ by [`Language.initialize`](/api/language#initialize).
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> span_predictor.initialize(lambda: [], nlp=nlp)
> span_resolver = nlp.add_pipe("span_resolver")
> span_resolver.initialize(lambda: [], nlp=nlp)
> ```
| Name | Description |
@ -158,7 +175,7 @@ by [`Language.initialize`](/api/language#initialize).
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## SpanPredictor.predict {#predict tag="method"}
## SpanResolver.predict {#predict tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
modifying them. Predictions are returned as a list of `MentionClusters`, one for
@ -169,8 +186,8 @@ correspond to token indices.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> spans = span_predictor.predict([doc1, doc2])
> span_resolver = nlp.add_pipe("span_resolver")
> spans = span_resolver.predict([doc1, doc2])
> ```
| Name | Description |
@ -178,7 +195,7 @@ correspond to token indices.
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ |
## SpanPredictor.set_annotations {#set_annotations tag="method"}
## SpanResolver.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, saving predictions using the output prefix in
`Doc.spans`.
@ -186,9 +203,9 @@ Modify a batch of documents, saving predictions using the output prefix in
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> spans = span_predictor.predict([doc1, doc2])
> span_predictor.set_annotations([doc1, doc2], spans)
> span_resolver = nlp.add_pipe("span_resolver")
> spans = span_resolver.predict([doc1, doc2])
> span_resolver.set_annotations([doc1, doc2], spans)
> ```
| Name | Description |
@ -196,17 +213,17 @@ Modify a batch of documents, saving predictions using the output prefix in
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ |
## SpanPredictor.update {#update tag="method"}
## SpanResolver.update {#update tag="method"}
Learn from a batch of [`Example`](/api/example) objects. Delegates to
[`predict`](/api/span-predictor#predict).
[`predict`](/api/span-resolver#predict).
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> span_resolver = nlp.add_pipe("span_resolver")
> optimizer = nlp.initialize()
> losses = span_predictor.update(examples, sgd=optimizer)
> losses = span_resolver.update(examples, sgd=optimizer)
> ```
| Name | Description |
@ -218,22 +235,22 @@ Learn from a batch of [`Example`](/api/example) objects. Delegates to
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SpanPredictor.create_optimizer {#create_optimizer tag="method"}
## SpanResolver.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> optimizer = span_predictor.create_optimizer()
> span_resolver = nlp.add_pipe("span_resolver")
> optimizer = span_resolver.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## SpanPredictor.use_params {#use_params tag="method, contextmanager"}
## SpanResolver.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
@ -241,24 +258,24 @@ context, the original parameters are restored.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> with span_predictor.use_params(optimizer.averages):
> span_predictor.to_disk("/best_model")
> span_resolver = nlp.add_pipe("span_resolver")
> with span_resolver.use_params(optimizer.averages):
> span_resolver.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## SpanPredictor.to_disk {#to_disk tag="method"}
## SpanResolver.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> span_predictor.to_disk("/path/to/span_predictor")
> span_resolver = nlp.add_pipe("span_resolver")
> span_resolver.to_disk("/path/to/span_resolver")
> ```
| Name | Description |
@ -267,15 +284,15 @@ Serialize the pipe to disk.
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## SpanPredictor.from_disk {#from_disk tag="method"}
## SpanResolver.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> span_predictor.from_disk("/path/to/span_predictor")
> span_resolver = nlp.add_pipe("span_resolver")
> span_resolver.from_disk("/path/to/span_resolver")
> ```
| Name | Description |
@ -283,15 +300,15 @@ Load the pipe from disk. Modifies the object in place and returns it.
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `SpanPredictor` object. ~~SpanPredictor~~ |
| **RETURNS** | The modified `SpanResolver` object. ~~SpanResolver~~ |
## SpanPredictor.to_bytes {#to_bytes tag="method"}
## SpanResolver.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> span_predictor = nlp.add_pipe("span_predictor")
> span_predictor_bytes = span_predictor.to_bytes()
> span_resolver = nlp.add_pipe("span_resolver")
> span_resolver_bytes = span_resolver.to_bytes()
> ```
Serialize the pipe to a bytestring.
@ -300,18 +317,18 @@ Serialize the pipe to a bytestring.
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `SpanPredictor` object. ~~bytes~~ |
| **RETURNS** | The serialized form of the `SpanResolver` object. ~~bytes~~ |
## SpanPredictor.from_bytes {#from_bytes tag="method"}
## SpanResolver.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_predictor_bytes = span_predictor.to_bytes()
> span_predictor = nlp.add_pipe("span_predictor")
> span_predictor.from_bytes(span_predictor_bytes)
> span_resolver_bytes = span_resolver.to_bytes()
> span_resolver = nlp.add_pipe("span_resolver")
> span_resolver.from_bytes(span_resolver_bytes)
> ```
| Name | Description |
@ -319,7 +336,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `SpanPredictor` object. ~~SpanPredictor~~ |
| **RETURNS** | The `SpanResolver` object. ~~SpanResolver~~ |
## Serialization fields {#serialization-fields}
@ -330,7 +347,7 @@ serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = span_predictor.to_disk("/path", exclude=["vocab"])
> data = span_resolver.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |