diff --git a/spacy/pipeline/span_finder.py b/spacy/pipeline/span_finder.py index cc65e2e36..8727be953 100644 --- a/spacy/pipeline/span_finder.py +++ b/spacy/pipeline/span_finder.py @@ -107,7 +107,9 @@ def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: "getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], []) ) kwargs.setdefault("has_annotation", lambda doc: key in doc.spans) - return Scorer.score_spans(examples, **kwargs) + scores = Scorer.score_spans(examples, **kwargs) + scores.pop(f"{kwargs['attr']}_per_type", None) + return scores class _MaxInt(int): diff --git a/spacy/tests/pipeline/test_span_finder.py b/spacy/tests/pipeline/test_span_finder.py index 1d0140ff7..7050f4653 100644 --- a/spacy/tests/pipeline/test_span_finder.py +++ b/spacy/tests/pipeline/test_span_finder.py @@ -135,7 +135,6 @@ def test_span_finder_component(): nlp.initialize() docs = list(span_finder.pipe(docs)) - # TODO: update hard-coded name assert SPANS_KEY in docs[0].spans @@ -252,7 +251,7 @@ def test_overfitting_IO(): # Test scoring scores = nlp.evaluate(train_examples) assert f"span_finder_{span_finder.spans_key}_f" in scores - # XXX Its not perfect 1.0 F1 because we want it to overgenerate for now. + # It's not perfect 1.0 F1 because it's designed to overgenerate for now. assert scores[f"span_finder_{span_finder.spans_key}_f"] == 0.4 assert scores[f"span_finder_{span_finder.spans_key}_r"] == 1.0