diff --git a/website/docs/api/doc.md b/website/docs/api/doc.md
index f97f4ad83..4e29140aa 100644
--- a/website/docs/api/doc.md
+++ b/website/docs/api/doc.md
@@ -751,22 +751,23 @@ The L2 norm of the document's vector representation.
## Attributes {#attributes}
-| Name | Description |
-| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- |
-| `text` | A string representation of the document text. ~~str~~ |
-| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
-| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
-| `vocab` | The store of lexical types. ~~Vocab~~ |
-| `tensor` 2 | Container for dense vector representations. ~~numpy.ndarray~~ |
-| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
-| `lang` 2.1 | Language of the document's vocabulary. ~~int~~ |
-| `lang_` 2.1 | Language of the document's vocabulary. ~~str~~ |
-| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
-| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
-| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
-| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
-| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
-| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
+| Name | Description |
+| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------- |
+| `text` | A string representation of the document text. ~~str~~ |
+| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
+| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
+| `vocab` | The store of lexical types. ~~Vocab~~ |
+| `tensor` 2 | Container for dense vector representations. ~~numpy.ndarray~~ |
+| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
+| `lang` 2.1 | Language of the document's vocabulary. ~~int~~ |
+| `lang_` 2.1 | Language of the document's vocabulary. ~~str~~ |
+| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
+| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
+| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
+| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
+| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
+| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
+| `activations` | A dictionary of activations per trainable pipe (available when the `store_activations` option of a pipe is enabled). ~~Dict[str, Option[Any]]~~ |
## Serialization fields {#serialization-fields}
diff --git a/website/docs/api/edittreelemmatizer.md b/website/docs/api/edittreelemmatizer.md
index 99a705f5e..1879f61e0 100644
--- a/website/docs/api/edittreelemmatizer.md
+++ b/website/docs/api/edittreelemmatizer.md
@@ -44,14 +44,15 @@ architectures and their arguments and hyperparameters.
> nlp.add_pipe("trainable_lemmatizer", config=config, name="lemmatizer")
> ```
-| Setting | Description |
-| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
-| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ |
-| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ |
-| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
-| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ |
-| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ |
+| Setting | Description |
+| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| `model` | A model instance that predicts the edit tree probabilities. The output vectors should match the number of edit trees in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
+| `backoff` | ~~Token~~ attribute to use when no applicable edit tree is found. Defaults to `orth`. ~~str~~ |
+| `min_tree_freq` | Minimum frequency of an edit tree in the training set to be used. Defaults to `3`. ~~int~~ |
+| `overwrite` | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
+| `top_k` | The number of most probable edit trees to try before resorting to `backoff`. Defaults to `1`. ~~int~~ |
+| `scorer` | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"lemma"`. ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"probs"` and `"guesses"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/edit_tree_lemmatizer.py
diff --git a/website/docs/api/entitylinker.md b/website/docs/api/entitylinker.md
index 8e0d6087a..9b11d0dda 100644
--- a/website/docs/api/entitylinker.md
+++ b/website/docs/api/entitylinker.md
@@ -63,6 +63,7 @@ architectures and their arguments and hyperparameters.
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"ents"` and `"scores"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/entity_linker.py
diff --git a/website/docs/api/morphologizer.md b/website/docs/api/morphologizer.md
index 434c56833..c41f0157f 100644
--- a/website/docs/api/morphologizer.md
+++ b/website/docs/api/morphologizer.md
@@ -48,6 +48,7 @@ architectures and their arguments and hyperparameters.
| `overwrite` 3.2 | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~ |
| `extend` 3.2 | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~ |
| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"probs"` and `"guesses"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx
diff --git a/website/docs/api/sentencerecognizer.md b/website/docs/api/sentencerecognizer.md
index 29bf10393..fbac4d0a6 100644
--- a/website/docs/api/sentencerecognizer.md
+++ b/website/docs/api/sentencerecognizer.md
@@ -44,6 +44,7 @@ architectures and their arguments and hyperparameters.
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for the attribute `"sents"`. ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"probs"` and `"guesses"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/senter.pyx
diff --git a/website/docs/api/spancategorizer.md b/website/docs/api/spancategorizer.md
index f09ac8bdb..453b9c01a 100644
--- a/website/docs/api/spancategorizer.md
+++ b/website/docs/api/spancategorizer.md
@@ -52,14 +52,15 @@ architectures and their arguments and hyperparameters.
> nlp.add_pipe("spancat", config=config)
> ```
-| Setting | Description |
-| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
-| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
-| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
-| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
-| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
-| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
+| Setting | Description |
+| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
+| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
+| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
+| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
+| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
+| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"indices"` and `"scores"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/spancat.py
@@ -93,7 +94,7 @@ shortcut for this and instantiate the component using its string name and
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
-| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
+| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
diff --git a/website/docs/api/tagger.md b/website/docs/api/tagger.md
index b51864d3a..bfd7e3bba 100644
--- a/website/docs/api/tagger.md
+++ b/website/docs/api/tagger.md
@@ -46,6 +46,7 @@ architectures and their arguments and hyperparameters.
| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ |
| `neg_prefix` 3.2.1 | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ |
+| `store_activations` | Store activations in `Doc` when annotating. Supported activations are `"probs"` and `"guesses"`. ~~Union[bool, list[str]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/tagger.pyx
diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md
index 2ff569bad..492ca38c7 100644
--- a/website/docs/api/textcategorizer.md
+++ b/website/docs/api/textcategorizer.md
@@ -116,14 +116,15 @@ Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe).
-| Name | Description |
-| -------------- | -------------------------------------------------------------------------------------------------------------------------------- |
-| `vocab` | The shared vocabulary. ~~Vocab~~ |
-| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
-| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
-| _keyword-only_ | |
-| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
-| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ |
+| Name | Description |
+| ------------------- | -------------------------------------------------------------------------------------------------------------------------------- |
+| `vocab` | The shared vocabulary. ~~Vocab~~ |
+| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
+| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
+| _keyword-only_ | |
+| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
+| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ |
+| `store_activations` | Store activations in `Doc` when annotating. The supported activations is `"probs"`. ~~Union[bool, list[str]]~~ |
## TextCategorizer.\_\_call\_\_ {#call tag="method"}