diff --git a/examples/training/load_ner.py b/examples/training/load_ner.py new file mode 100644 index 000000000..bf81cee50 --- /dev/null +++ b/examples/training/load_ner.py @@ -0,0 +1,22 @@ +# Load NER +from __future__ import unicode_literals +import spacy +import pathlib +from spacy.pipeline import EntityRecognizer +from spacy.vocab import Vocab + +def load_model(model_dir): + model_dir = pathlib.Path(model_dir) + nlp = spacy.load('en', parser=False, entity=False, add_vectors=False) + with (model_dir / 'vocab' / 'strings.json').open('r', encoding='utf8') as file_: + nlp.vocab.strings.load(file_) + nlp.vocab.load_lexemes(model_dir / 'vocab' / 'lexemes.bin') + ner = EntityRecognizer.load(model_dir, nlp.vocab, require=True) + return (nlp, ner) + +(nlp, ner) = load_model('ner') +doc = nlp.make_doc('Who is Shaka Khan?') +nlp.tagger(doc) +ner(doc) +for word in doc: + print(word.text, word.orth, word.lower, word.tag_, word.ent_type_, word.ent_iob)