diff --git a/spacy/gold.pxd b/spacy/gold.pxd deleted file mode 100644 index bf724868f..000000000 --- a/spacy/gold.pxd +++ /dev/null @@ -1,68 +0,0 @@ -from cymem.cymem cimport Pool - -from .typedefs cimport attr_t -from .syntax.transition_system cimport Transition - -from .tokens import Doc - - -cdef struct GoldParseC: - int* tags - int* heads - int* has_dep - int* sent_start - attr_t* labels - int** brackets - Transition* ner - - -cdef class GoldParse: - cdef Pool mem - - cdef GoldParseC c - cdef readonly TokenAnnotation orig - - cdef int length - cdef public int loss - cdef public list words - cdef public list tags - cdef public list pos - cdef public list morphs - cdef public list lemmas - cdef public list sent_starts - cdef public list heads - cdef public list labels - cdef public dict orths - cdef public list ner - cdef public dict brackets - cdef public dict cats - cdef public dict links - - cdef readonly list cand_to_gold - cdef readonly list gold_to_cand - - -cdef class TokenAnnotation: - cdef public list ids - cdef public list words - cdef public list tags - cdef public list pos - cdef public list morphs - cdef public list lemmas - cdef public list heads - cdef public list deps - cdef public list entities - cdef public list sent_starts - cdef public dict brackets_by_start - - -cdef class DocAnnotation: - cdef public object cats - cdef public object links - - -cdef class Example: - cdef public object doc - cdef public TokenAnnotation token_annotation - cdef public DocAnnotation doc_annotation - cdef public object goldparse diff --git a/spacy/gold.pyx b/spacy/gold.pyx deleted file mode 100644 index 1e58f0635..000000000 --- a/spacy/gold.pyx +++ /dev/null @@ -1,1407 +0,0 @@ -# cython: profile=True -import re -import random -import numpy -import tempfile -import shutil -import itertools -from pathlib import Path -import srsly -import warnings - -from .syntax import nonproj -from .tokens import Doc, Span -from .errors import Errors, AlignmentError, Warnings -from . import util - - -punct_re = re.compile(r"\W") - - -def tags_to_entities(tags): - entities = [] - start = None - for i, tag in enumerate(tags): - if tag is None: - continue - if tag.startswith("O"): - # TODO: We shouldn't be getting these malformed inputs. Fix this. - if start is not None: - start = None - continue - elif tag == "-": - continue - elif tag.startswith("I"): - if start is None: - raise ValueError(Errors.E067.format(tags=tags[:i + 1])) - continue - if tag.startswith("U"): - entities.append((tag[2:], i, i)) - elif tag.startswith("B"): - start = i - elif tag.startswith("L"): - entities.append((tag[2:], start, i)) - start = None - else: - raise ValueError(Errors.E068.format(tag=tag)) - return entities - - -def merge_sents(sents): - m_deps = [[], [], [], [], [], []] - m_cats = {} - m_brackets = [] - i = 0 - for (ids, words, tags, heads, labels, ner), (cats, brackets) in sents: - m_deps[0].extend(id_ + i for id_ in ids) - m_deps[1].extend(words) - m_deps[2].extend(tags) - m_deps[3].extend(head + i for head in heads) - m_deps[4].extend(labels) - m_deps[5].extend(ner) - m_brackets.extend((b["first"] + i, b["last"] + i, b["label"]) - for b in brackets) - m_cats.update(cats) - i += len(ids) - return [(m_deps, (m_cats, m_brackets))] - - -def _normalize_for_alignment(tokens): - return [w.replace(" ", "").lower() for w in tokens] - - -def align(tokens_a, tokens_b): - """Calculate alignment tables between two tokenizations. - - tokens_a (List[str]): The candidate tokenization. - tokens_b (List[str]): The reference tokenization. - RETURNS: (tuple): A 5-tuple consisting of the following information: - * cost (int): The number of misaligned tokens. - * a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`. - For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns - to `tokens_b[6]`. If there's no one-to-one alignment for a token, - it has the value -1. - * b2a (List[int]): The same as `a2b`, but mapping the other direction. - * a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a` - to indices in `tokens_b`, where multiple tokens of `tokens_a` align to - the same token of `tokens_b`. - * b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other - direction. - """ - tokens_a = _normalize_for_alignment(tokens_a) - tokens_b = _normalize_for_alignment(tokens_b) - cost = 0 - a2b = numpy.empty(len(tokens_a), dtype="i") - b2a = numpy.empty(len(tokens_b), dtype="i") - a2b.fill(-1) - b2a.fill(-1) - a2b_multi = {} - b2a_multi = {} - i = 0 - j = 0 - offset_a = 0 - offset_b = 0 - while i < len(tokens_a) and j < len(tokens_b): - a = tokens_a[i][offset_a:] - b = tokens_b[j][offset_b:] - if a == b: - if offset_a == offset_b == 0: - a2b[i] = j - b2a[j] = i - elif offset_a == 0: - cost += 2 - a2b_multi[i] = j - elif offset_b == 0: - cost += 2 - b2a_multi[j] = i - offset_a = offset_b = 0 - i += 1 - j += 1 - elif a == "": - assert offset_a == 0 - cost += 1 - i += 1 - elif b == "": - assert offset_b == 0 - cost += 1 - j += 1 - elif b.startswith(a): - cost += 1 - if offset_a == 0: - a2b_multi[i] = j - i += 1 - offset_a = 0 - offset_b += len(a) - elif a.startswith(b): - cost += 1 - if offset_b == 0: - b2a_multi[j] = i - j += 1 - offset_b = 0 - offset_a += len(b) - else: - assert "".join(tokens_a) != "".join(tokens_b) - raise AlignmentError(Errors.E186.format(tok_a=tokens_a, tok_b=tokens_b)) - return cost, a2b, b2a, a2b_multi, b2a_multi - - -class GoldCorpus(object): - """An annotated corpus, using the JSON file format. Manages - annotations for tagging, dependency parsing and NER. - - DOCS: https://spacy.io/api/goldcorpus - """ - def __init__(self, train, dev, gold_preproc=False, limit=None): - """Create a GoldCorpus. - - train (str / Path): File or directory of training data. - dev (str / Path): File or directory of development data. - RETURNS (GoldCorpus): The newly created object. - """ - self.limit = limit - if isinstance(train, str) or isinstance(train, Path): - train = self.read_examples(self.walk_corpus(train)) - dev = self.read_examples(self.walk_corpus(dev)) - # Write temp directory with one doc per file, so we can shuffle and stream - self.tmp_dir = Path(tempfile.mkdtemp()) - self.write_msgpack(self.tmp_dir / "train", train, limit=self.limit) - self.write_msgpack(self.tmp_dir / "dev", dev, limit=self.limit) - - def __del__(self): - shutil.rmtree(self.tmp_dir) - - @staticmethod - def write_msgpack(directory, examples, limit=0): - if not directory.exists(): - directory.mkdir() - n = 0 - for i, example in enumerate(examples): - ex_dict = example.to_dict() - text = example.text - srsly.write_msgpack(directory / f"{i}.msg", (text, ex_dict)) - n += 1 - if limit and n >= limit: - break - - @staticmethod - def walk_corpus(path): - path = util.ensure_path(path) - if not path.is_dir(): - return [path] - paths = [path] - locs = [] - seen = set() - for path in paths: - if str(path) in seen: - continue - seen.add(str(path)) - if path.parts[-1].startswith("."): - continue - elif path.is_dir(): - paths.extend(path.iterdir()) - elif path.parts[-1].endswith((".json", ".jsonl")): - locs.append(path) - return locs - - @staticmethod - def read_examples(locs, limit=0): - """ Yield training examples """ - i = 0 - for loc in locs: - loc = util.ensure_path(loc) - file_name = loc.parts[-1] - if file_name.endswith("json"): - examples = read_json_file(loc) - elif file_name.endswith("jsonl"): - gold_tuples = srsly.read_jsonl(loc) - first_gold_tuple = next(gold_tuples) - gold_tuples = itertools.chain([first_gold_tuple], gold_tuples) - # TODO: proper format checks with schemas - if isinstance(first_gold_tuple, dict): - if first_gold_tuple.get("paragraphs", None): - examples = read_json_object(gold_tuples) - elif first_gold_tuple.get("doc_annotation", None): - examples = [] - for ex_dict in gold_tuples: - doc = ex_dict.get("doc", None) - if doc is None: - doc = ex_dict.get("text", None) - if not (doc is None or isinstance(doc, Doc) or isinstance(doc, str)): - raise ValueError(Errors.E987.format(type=type(doc))) - examples.append(Example.from_dict(ex_dict, doc=doc)) - - elif file_name.endswith("msg"): - text, ex_dict = srsly.read_msgpack(loc) - examples = [Example.from_dict(ex_dict, doc=text)] - else: - supported = ("json", "jsonl", "msg") - raise ValueError(Errors.E124.format(path=loc, formats=supported)) - try: - for example in examples: - yield example - i += 1 - if limit and i >= limit: - return - except KeyError as e: - msg = "Missing key {}".format(e) - raise KeyError(Errors.E996.format(file=file_name, msg=msg)) - except UnboundLocalError as e: - msg = "Unexpected document structure" - raise ValueError(Errors.E996.format(file=file_name, msg=msg)) - - @property - def dev_examples(self): - locs = (self.tmp_dir / "dev").iterdir() - yield from self.read_examples(locs, limit=self.limit) - - @property - def train_examples(self): - locs = (self.tmp_dir / "train").iterdir() - yield from self.read_examples(locs, limit=self.limit) - - def count_train(self): - """Returns count of words in train examples""" - n = 0 - i = 0 - for example in self.train_examples: - n += len(example.token_annotation.words) - if self.limit and i >= self.limit: - break - i += 1 - return n - - def train_dataset(self, nlp, gold_preproc=False, max_length=None, - noise_level=0.0, orth_variant_level=0.0, - ignore_misaligned=False): - locs = list((self.tmp_dir / 'train').iterdir()) - random.shuffle(locs) - train_examples = self.read_examples(locs, limit=self.limit) - gold_examples = self.iter_gold_docs(nlp, train_examples, gold_preproc, - max_length=max_length, - noise_level=noise_level, - orth_variant_level=orth_variant_level, - make_projective=True, - ignore_misaligned=ignore_misaligned) - yield from gold_examples - - def train_dataset_without_preprocessing(self, nlp, gold_preproc=False, - ignore_misaligned=False): - examples = self.iter_gold_docs(nlp, self.train_examples, - gold_preproc=gold_preproc, - ignore_misaligned=ignore_misaligned) - yield from examples - - def dev_dataset(self, nlp, gold_preproc=False, ignore_misaligned=False): - examples = self.iter_gold_docs(nlp, self.dev_examples, - gold_preproc=gold_preproc, - ignore_misaligned=ignore_misaligned) - yield from examples - - @classmethod - def iter_gold_docs(cls, nlp, examples, gold_preproc, max_length=None, - noise_level=0.0, orth_variant_level=0.0, - make_projective=False, ignore_misaligned=False): - """ Setting gold_preproc will result in creating a doc per sentence """ - for example in examples: - if gold_preproc: - split_examples = example.split_sents() - example_golds = [] - for split_example in split_examples: - split_example_docs = cls._make_docs(nlp, split_example, - gold_preproc, noise_level=noise_level, - orth_variant_level=orth_variant_level) - split_example_golds = cls._make_golds(split_example_docs, - vocab=nlp.vocab, make_projective=make_projective, - ignore_misaligned=ignore_misaligned) - example_golds.extend(split_example_golds) - else: - example_docs = cls._make_docs(nlp, example, - gold_preproc, noise_level=noise_level, - orth_variant_level=orth_variant_level) - example_golds = cls._make_golds(example_docs, vocab=nlp.vocab, - make_projective=make_projective, - ignore_misaligned=ignore_misaligned) - for ex in example_golds: - if ex.goldparse is not None: - if (not max_length) or len(ex.doc) < max_length: - yield ex - - @classmethod - def _make_docs(cls, nlp, example, gold_preproc, noise_level=0.0, orth_variant_level=0.0): - var_example = make_orth_variants(nlp, example, orth_variant_level=orth_variant_level) - # gold_preproc is not used ?! - if example.text is not None: - var_text = add_noise(var_example.text, noise_level) - var_doc = nlp.make_doc(var_text) - var_example.doc = var_doc - else: - var_doc = Doc(nlp.vocab, words=add_noise(var_example.token_annotation.words, noise_level)) - var_example.doc = var_doc - return [var_example] - - @classmethod - def _make_golds(cls, examples, vocab=None, make_projective=False, - ignore_misaligned=False): - filtered_examples = [] - for example in examples: - gold_parses = example.get_gold_parses(vocab=vocab, - make_projective=make_projective, - ignore_misaligned=ignore_misaligned) - assert len(gold_parses) == 1 - doc, gold = gold_parses[0] - if doc: - assert doc == example.doc - example.goldparse = gold - filtered_examples.append(example) - return filtered_examples - - -def make_orth_variants(nlp, example, orth_variant_level=0.0): - if random.random() >= orth_variant_level: - return example - if not example.token_annotation: - return example - raw = example.text - lower = False - if random.random() >= 0.5: - lower = True - if raw is not None: - raw = raw.lower() - ndsv = nlp.Defaults.single_orth_variants - ndpv = nlp.Defaults.paired_orth_variants - # modify words in paragraph_tuples - variant_example = Example(doc=raw) - token_annotation = example.token_annotation - words = token_annotation.words - tags = token_annotation.tags - if not words or not tags: - # add the unmodified annotation - token_dict = token_annotation.to_dict() - variant_example.set_token_annotation(**token_dict) - else: - if lower: - words = [w.lower() for w in words] - # single variants - punct_choices = [random.choice(x["variants"]) for x in ndsv] - for word_idx in range(len(words)): - for punct_idx in range(len(ndsv)): - if tags[word_idx] in ndsv[punct_idx]["tags"] \ - and words[word_idx] in ndsv[punct_idx]["variants"]: - words[word_idx] = punct_choices[punct_idx] - # paired variants - punct_choices = [random.choice(x["variants"]) for x in ndpv] - for word_idx in range(len(words)): - for punct_idx in range(len(ndpv)): - if tags[word_idx] in ndpv[punct_idx]["tags"] \ - and words[word_idx] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]): - # backup option: random left vs. right from pair - pair_idx = random.choice([0, 1]) - # best option: rely on paired POS tags like `` / '' - if len(ndpv[punct_idx]["tags"]) == 2: - pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx]) - # next best option: rely on position in variants - # (may not be unambiguous, so order of variants matters) - else: - for pair in ndpv[punct_idx]["variants"]: - if words[word_idx] in pair: - pair_idx = pair.index(words[word_idx]) - words[word_idx] = punct_choices[punct_idx][pair_idx] - - token_dict = token_annotation.to_dict() - token_dict["words"] = words - token_dict["tags"] = tags - variant_example.set_token_annotation(**token_dict) - # modify raw to match variant_paragraph_tuples - if raw is not None: - variants = [] - for single_variants in ndsv: - variants.extend(single_variants["variants"]) - for paired_variants in ndpv: - variants.extend(list(itertools.chain.from_iterable(paired_variants["variants"]))) - # store variants in reverse length order to be able to prioritize - # longer matches (e.g., "---" before "--") - variants = sorted(variants, key=lambda x: len(x)) - variants.reverse() - variant_raw = "" - raw_idx = 0 - # add initial whitespace - while raw_idx < len(raw) and re.match("\s", raw[raw_idx]): - variant_raw += raw[raw_idx] - raw_idx += 1 - for word in variant_example.token_annotation.words: - match_found = False - # skip whitespace words - if word.isspace(): - match_found = True - # add identical word - elif word not in variants and raw[raw_idx:].startswith(word): - variant_raw += word - raw_idx += len(word) - match_found = True - # add variant word - else: - for variant in variants: - if not match_found and \ - raw[raw_idx:].startswith(variant): - raw_idx += len(variant) - variant_raw += word - match_found = True - # something went wrong, abort - # (add a warning message?) - if not match_found: - return example - # add following whitespace - while raw_idx < len(raw) and re.match("\s", raw[raw_idx]): - variant_raw += raw[raw_idx] - raw_idx += 1 - variant_example.doc = variant_raw - return variant_example - return variant_example - - -def add_noise(orig, noise_level): - if random.random() >= noise_level: - return orig - elif type(orig) == list: - corrupted = [_corrupt(word, noise_level) for word in orig] - corrupted = [w for w in corrupted if w] - return corrupted - else: - return "".join(_corrupt(c, noise_level) for c in orig) - - -def _corrupt(c, noise_level): - if random.random() >= noise_level: - return c - elif c in [".", "'", "!", "?", ","]: - return "\n" - else: - return c.lower() - - -def read_json_object(json_corpus_section): - """Take a list of JSON-formatted documents (e.g. from an already loaded - training data file) and yield annotations in the GoldParse format. - - json_corpus_section (list): The data. - YIELDS (Example): The reformatted data - one training example per paragraph - """ - for json_doc in json_corpus_section: - examples = json_to_examples(json_doc) - for ex in examples: - yield ex - - -def json_to_examples(doc): - """Convert an item in the JSON-formatted training data to the format - used by GoldParse. - - doc (dict): One entry in the training data. - YIELDS (Example): The reformatted data - one training example per paragraph - """ - paragraphs = [] - for paragraph in doc["paragraphs"]: - example = Example(doc=paragraph.get("raw", None)) - words = [] - ids = [] - tags = [] - pos = [] - morphs = [] - lemmas = [] - heads = [] - labels = [] - ner = [] - sent_starts = [] - brackets = [] - for sent in paragraph["sentences"]: - sent_start_i = len(words) - for i, token in enumerate(sent["tokens"]): - words.append(token["orth"]) - ids.append(token.get('id', sent_start_i + i)) - tags.append(token.get('tag', "-")) - pos.append(token.get("pos", "")) - morphs.append(token.get("morph", "")) - lemmas.append(token.get("lemma", "")) - heads.append(token.get("head", 0) + sent_start_i + i) - labels.append(token.get("dep", "")) - # Ensure ROOT label is case-insensitive - if labels[-1].lower() == "root": - labels[-1] = "ROOT" - ner.append(token.get("ner", "-")) - if i == 0: - sent_starts.append(1) - else: - sent_starts.append(0) - if "brackets" in sent: - brackets.extend((b["first"] + sent_start_i, - b["last"] + sent_start_i, b["label"]) - for b in sent["brackets"]) - cats = {} - for cat in paragraph.get("cats", {}): - cats[cat["label"]] = cat["value"] - example.set_token_annotation(ids=ids, words=words, tags=tags, - pos=pos, morphs=morphs, lemmas=lemmas, heads=heads, - deps=labels, entities=ner, sent_starts=sent_starts, - brackets=brackets) - example.set_doc_annotation(cats=cats) - yield example - - -def read_json_file(loc, docs_filter=None, limit=None): - loc = util.ensure_path(loc) - if loc.is_dir(): - for filename in loc.iterdir(): - yield from read_json_file(loc / filename, limit=limit) - else: - for doc in _json_iterate(loc): - if docs_filter is not None and not docs_filter(doc): - continue - for json_data in json_to_examples(doc): - yield json_data - - -def _json_iterate(loc): - # We should've made these files jsonl...But since we didn't, parse out - # the docs one-by-one to reduce memory usage. - # It's okay to read in the whole file -- just don't parse it into JSON. - cdef bytes py_raw - loc = util.ensure_path(loc) - with loc.open("rb") as file_: - py_raw = file_.read() - cdef long file_length = len(py_raw) - if file_length > 2 ** 30: - warnings.warn(Warnings.W027.format(size=file_length)) - - raw = py_raw - cdef int square_depth = 0 - cdef int curly_depth = 0 - cdef int inside_string = 0 - cdef int escape = 0 - cdef long start = -1 - cdef char c - cdef char quote = ord('"') - cdef char backslash = ord("\\") - cdef char open_square = ord("[") - cdef char close_square = ord("]") - cdef char open_curly = ord("{") - cdef char close_curly = ord("}") - for i in range(file_length): - c = raw[i] - if escape: - escape = False - continue - if c == backslash: - escape = True - continue - if c == quote: - inside_string = not inside_string - continue - if inside_string: - continue - if c == open_square: - square_depth += 1 - elif c == close_square: - square_depth -= 1 - elif c == open_curly: - if square_depth == 1 and curly_depth == 0: - start = i - curly_depth += 1 - elif c == close_curly: - curly_depth -= 1 - if square_depth == 1 and curly_depth == 0: - py_str = py_raw[start : i + 1].decode("utf8") - try: - yield srsly.json_loads(py_str) - except Exception: - print(py_str) - raise - start = -1 - - -def iob_to_biluo(tags): - out = [] - tags = list(tags) - while tags: - out.extend(_consume_os(tags)) - out.extend(_consume_ent(tags)) - return out - - -def biluo_to_iob(tags): - out = [] - for tag in tags: - tag = tag.replace("U-", "B-", 1).replace("L-", "I-", 1) - out.append(tag) - return out - - -def _consume_os(tags): - while tags and tags[0] == "O": - yield tags.pop(0) - - -def _consume_ent(tags): - if not tags: - return [] - tag = tags.pop(0) - target_in = "I" + tag[1:] - target_last = "L" + tag[1:] - length = 1 - while tags and tags[0] in {target_in, target_last}: - length += 1 - tags.pop(0) - label = tag[2:] - if length == 1: - if len(label) == 0: - raise ValueError(Errors.E177.format(tag=tag)) - return ["U-" + label] - else: - start = "B-" + label - end = "L-" + label - middle = [f"I-{label}" for _ in range(1, length - 1)] - return [start] + middle + [end] - - -cdef class TokenAnnotation: - def __init__(self, ids=None, words=None, tags=None, pos=None, morphs=None, - lemmas=None, heads=None, deps=None, entities=None, sent_starts=None, - brackets=None): - self.ids = ids if ids else [] - self.words = words if words else [] - self.tags = tags if tags else [] - self.pos = pos if pos else [] - self.morphs = morphs if morphs else [] - self.lemmas = lemmas if lemmas else [] - self.heads = heads if heads else [] - self.deps = deps if deps else [] - self.entities = entities if entities else [] - self.sent_starts = sent_starts if sent_starts else [] - self.brackets_by_start = {} - if brackets: - for b_start, b_end, b_label in brackets: - self.brackets_by_start.setdefault(b_start, []).append((b_end, b_label)) - - @property - def brackets(self): - brackets = [] - for start, ends_labels in self.brackets_by_start.items(): - for end, label in ends_labels: - brackets.append((start, end, label)) - return brackets - - @classmethod - def from_dict(cls, token_dict): - return cls(ids=token_dict.get("ids", None), - words=token_dict.get("words", None), - tags=token_dict.get("tags", None), - pos=token_dict.get("pos", None), - morphs=token_dict.get("morphs", None), - lemmas=token_dict.get("lemmas", None), - heads=token_dict.get("heads", None), - deps=token_dict.get("deps", None), - entities=token_dict.get("entities", None), - sent_starts=token_dict.get("sent_starts", None), - brackets=token_dict.get("brackets", None)) - - def to_dict(self): - return {"ids": self.ids, - "words": self.words, - "tags": self.tags, - "pos": self.pos, - "morphs": self.morphs, - "lemmas": self.lemmas, - "heads": self.heads, - "deps": self.deps, - "entities": self.entities, - "sent_starts": self.sent_starts, - "brackets": self.brackets} - - def get_id(self, i): - return self.ids[i] if i < len(self.ids) else i - - def get_word(self, i): - return self.words[i] if i < len(self.words) else "" - - def get_tag(self, i): - return self.tags[i] if i < len(self.tags) else "-" - - def get_pos(self, i): - return self.pos[i] if i < len(self.pos) else "" - - def get_morph(self, i): - return self.morphs[i] if i < len(self.morphs) else "" - - def get_lemma(self, i): - return self.lemmas[i] if i < len(self.lemmas) else "" - - def get_head(self, i): - return self.heads[i] if i < len(self.heads) else i - - def get_dep(self, i): - return self.deps[i] if i < len(self.deps) else "" - - def get_entity(self, i): - return self.entities[i] if i < len(self.entities) else "-" - - def get_sent_start(self, i): - return self.sent_starts[i] if i < len(self.sent_starts) else None - - def __str__(self): - return str(self.to_dict()) - - def __repr__(self): - return self.__str__() - - -cdef class DocAnnotation: - def __init__(self, cats=None, links=None): - self.cats = cats if cats else {} - self.links = links if links else {} - - @classmethod - def from_dict(cls, doc_dict): - return cls(cats=doc_dict.get("cats", None), links=doc_dict.get("links", None)) - - def to_dict(self): - return {"cats": self.cats, "links": self.links} - - def __str__(self): - return str(self.to_dict()) - - def __repr__(self): - return self.__str__() - - -cdef class Example: - def __init__(self, doc_annotation=None, token_annotation=None, doc=None, - goldparse=None): - """ Doc can either be text, or an actual Doc """ - self.doc = doc - self.doc_annotation = doc_annotation if doc_annotation else DocAnnotation() - self.token_annotation = token_annotation if token_annotation else TokenAnnotation() - self.goldparse = goldparse - - @classmethod - def from_gold(cls, goldparse, doc=None): - doc_annotation = DocAnnotation(cats=goldparse.cats, links=goldparse.links) - token_annotation = goldparse.get_token_annotation() - return cls(doc_annotation, token_annotation, doc) - - @classmethod - def from_dict(cls, example_dict, doc=None): - token_dict = example_dict.get("token_annotation", {}) - token_annotation = TokenAnnotation.from_dict(token_dict) - doc_dict = example_dict.get("doc_annotation", {}) - doc_annotation = DocAnnotation.from_dict(doc_dict) - return cls(doc_annotation, token_annotation, doc) - - def to_dict(self): - """ Note that this method does NOT export the doc, only the annotations ! """ - token_dict = self.token_annotation.to_dict() - doc_dict = self.doc_annotation.to_dict() - return {"token_annotation": token_dict, "doc_annotation": doc_dict} - - @property - def text(self): - if self.doc is None: - return None - if isinstance(self.doc, Doc): - return self.doc.text - return self.doc - - @property - def gold(self): - if self.goldparse is None: - doc, gold = self.get_gold_parses()[0] - self.goldparse = gold - return self.goldparse - - def set_token_annotation(self, ids=None, words=None, tags=None, pos=None, - morphs=None, lemmas=None, heads=None, deps=None, - entities=None, sent_starts=None, brackets=None): - self.token_annotation = TokenAnnotation(ids=ids, words=words, tags=tags, - pos=pos, morphs=morphs, lemmas=lemmas, heads=heads, - deps=deps, entities=entities, - sent_starts=sent_starts, brackets=brackets) - - def set_doc_annotation(self, cats=None, links=None): - if cats: - self.doc_annotation.cats = cats - if links: - self.doc_annotation.links = links - - def split_sents(self): - """ Split the token annotations into multiple Examples based on - sent_starts and return a list of the new Examples""" - if not self.token_annotation.words: - return [self] - s_example = Example(doc=None, doc_annotation=self.doc_annotation) - s_ids, s_words, s_tags, s_pos, s_morphs = [], [], [], [], [] - s_lemmas, s_heads, s_deps, s_ents, s_sent_starts = [], [], [], [], [] - s_brackets = [] - sent_start_i = 0 - cdef TokenAnnotation t = self.token_annotation - split_examples = [] - cdef int b_start, b_end - cdef unicode b_label - for i in range(len(t.words)): - if i > 0 and t.sent_starts[i] == 1: - s_example.set_token_annotation(ids=s_ids, - words=s_words, tags=s_tags, pos=s_pos, morphs=s_morphs, - lemmas=s_lemmas, heads=s_heads, deps=s_deps, - entities=s_ents, sent_starts=s_sent_starts, - brackets=s_brackets) - split_examples.append(s_example) - s_example = Example(doc=None, doc_annotation=self.doc_annotation) - s_ids, s_words, s_tags, s_pos, s_heads = [], [], [], [], [] - s_deps, s_ents, s_morphs, s_lemmas = [], [], [], [] - s_sent_starts, s_brackets = [], [] - sent_start_i = i - s_ids.append(t.get_id(i)) - s_words.append(t.get_word(i)) - s_tags.append(t.get_tag(i)) - s_pos.append(t.get_pos(i)) - s_morphs.append(t.get_morph(i)) - s_lemmas.append(t.get_lemma(i)) - s_heads.append(t.get_head(i) - sent_start_i) - s_deps.append(t.get_dep(i)) - s_ents.append(t.get_entity(i)) - s_sent_starts.append(t.get_sent_start(i)) - for b_end, b_label in t.brackets_by_start.get(i, []): - s_brackets.append( - (i - sent_start_i, b_end - sent_start_i, b_label) - ) - i += 1 - s_example.set_token_annotation(ids=s_ids, words=s_words, tags=s_tags, - pos=s_pos, morphs=s_morphs, lemmas=s_lemmas, heads=s_heads, - deps=s_deps, entities=s_ents, sent_starts=s_sent_starts, - brackets=s_brackets) - split_examples.append(s_example) - return split_examples - - - def get_gold_parses(self, merge=True, vocab=None, make_projective=False, - ignore_misaligned=False): - """Return a list of (doc, GoldParse) objects. - If merge is set to True, keep all Token annotations as one big list.""" - d = self.doc_annotation - # merge == do not modify Example - if merge: - t = self.token_annotation - doc = self.doc - if doc is None or not isinstance(doc, Doc): - if not vocab: - raise ValueError(Errors.E998) - doc = Doc(vocab, words=t.words) - try: - gp = GoldParse.from_annotation(doc, d, t, - make_projective=make_projective) - except AlignmentError: - if ignore_misaligned: - gp = None - else: - raise - return [(doc, gp)] - # not merging: one GoldParse per sentence, defining docs with the words - # from each sentence - else: - parses = [] - split_examples = self.split_sents() - for split_example in split_examples: - if not vocab: - raise ValueError(Errors.E998) - split_doc = Doc(vocab, words=split_example.token_annotation.words) - try: - gp = GoldParse.from_annotation(split_doc, d, - split_example.token_annotation, - make_projective=make_projective) - except AlignmentError: - if ignore_misaligned: - gp = None - else: - raise - if gp is not None: - parses.append((split_doc, gp)) - return parses - - @classmethod - def to_example_objects(cls, examples, make_doc=None, keep_raw_text=False): - """ - Return a list of Example objects, from a variety of input formats. - make_doc needs to be provided when the examples contain text strings and keep_raw_text=False - """ - if isinstance(examples, Example): - return [examples] - if isinstance(examples, tuple): - examples = [examples] - converted_examples = [] - for ex in examples: - if isinstance(ex, Example): - converted_examples.append(ex) - # convert string to Doc to Example - elif isinstance(ex, str): - if keep_raw_text: - converted_examples.append(Example(doc=ex)) - else: - doc = make_doc(ex) - converted_examples.append(Example(doc=doc)) - # convert Doc to Example - elif isinstance(ex, Doc): - converted_examples.append(Example(doc=ex)) - # convert tuples to Example - elif isinstance(ex, tuple) and len(ex) == 2: - doc, gold = ex - gold_dict = {} - # convert string to Doc - if isinstance(doc, str) and not keep_raw_text: - doc = make_doc(doc) - # convert dict to GoldParse - if isinstance(gold, dict): - gold_dict = gold - if doc is not None or gold.get("words", None) is not None: - gold = GoldParse(doc, **gold) - else: - gold = None - if gold is not None: - converted_examples.append(Example.from_gold(goldparse=gold, doc=doc)) - else: - raise ValueError(Errors.E999.format(gold_dict=gold_dict)) - else: - converted_examples.append(ex) - return converted_examples - - -cdef class GoldParse: - """Collection for training annotations. - - DOCS: https://spacy.io/api/goldparse - """ - @classmethod - def from_annotation(cls, doc, doc_annotation, token_annotation, make_projective=False): - return cls(doc, words=token_annotation.words, - tags=token_annotation.tags, - pos=token_annotation.pos, - morphs=token_annotation.morphs, - lemmas=token_annotation.lemmas, - heads=token_annotation.heads, - deps=token_annotation.deps, - entities=token_annotation.entities, - sent_starts=token_annotation.sent_starts, - cats=doc_annotation.cats, - links=doc_annotation.links, - make_projective=make_projective) - - def get_token_annotation(self): - ids = None - if self.words: - ids = list(range(len(self.words))) - - return TokenAnnotation(ids=ids, words=self.words, tags=self.tags, - pos=self.pos, morphs=self.morphs, - lemmas=self.lemmas, heads=self.heads, - deps=self.labels, entities=self.ner, - sent_starts=self.sent_starts) - - def __init__(self, doc, words=None, tags=None, pos=None, morphs=None, - lemmas=None, heads=None, deps=None, entities=None, - sent_starts=None, make_projective=False, cats=None, - links=None): - """Create a GoldParse. The fields will not be initialized if len(doc) is zero. - - doc (Doc): The document the annotations refer to. - words (iterable): A sequence of unicode word strings. - tags (iterable): A sequence of strings, representing tag annotations. - pos (iterable): A sequence of strings, representing UPOS annotations. - morphs (iterable): A sequence of strings, representing morph - annotations. - lemmas (iterable): A sequence of strings, representing lemma - annotations. - heads (iterable): A sequence of integers, representing syntactic - head offsets. - deps (iterable): A sequence of strings, representing the syntactic - relation types. - entities (iterable): A sequence of named entity annotations, either as - BILUO tag strings, or as `(start_char, end_char, label)` tuples, - representing the entity positions. - sent_starts (iterable): A sequence of sentence position tags, 1 for - the first word in a sentence, 0 for all others. - cats (dict): Labels for text classification. Each key in the dictionary - may be a string or an int, or a `(start_char, end_char, label)` - tuple, indicating that the label is applied to only part of the - document (usually a sentence). Unlike entity annotations, label - annotations can overlap, i.e. a single word can be covered by - multiple labelled spans. The TextCategorizer component expects - true examples of a label to have the value 1.0, and negative - examples of a label to have the value 0.0. Labels not in the - dictionary are treated as missing - the gradient for those labels - will be zero. - links (dict): A dict with `(start_char, end_char)` keys, - and the values being dicts with kb_id:value entries, - representing the external IDs in a knowledge base (KB) - mapped to either 1.0 or 0.0, indicating positive and - negative examples respectively. - RETURNS (GoldParse): The newly constructed object. - """ - self.mem = Pool() - self.loss = 0 - self.length = len(doc) - - self.cats = {} if cats is None else dict(cats) - self.links = {} if links is None else dict(links) - - # temporary doc for aligning entity annotation - entdoc = None - - # avoid allocating memory if the doc does not contain any tokens - if self.length == 0: - self.words = [] - self.tags = [] - self.heads = [] - self.labels = [] - self.ner = [] - self.morphs = [] - # set a minimal orig so that the scorer can score an empty doc - self.orig = TokenAnnotation(ids=[]) - else: - if not words: - words = [token.text for token in doc] - if not tags: - tags = [None for _ in words] - if not pos: - pos = [None for _ in words] - if not morphs: - morphs = [None for _ in words] - if not lemmas: - lemmas = [None for _ in words] - if not heads: - heads = [None for _ in words] - if not deps: - deps = [None for _ in words] - if not sent_starts: - sent_starts = [None for _ in words] - if entities is None: - entities = ["-" for _ in words] - elif len(entities) == 0: - entities = ["O" for _ in words] - else: - # Translate the None values to '-', to make processing easier. - # See Issue #2603 - entities = [(ent if ent is not None else "-") for ent in entities] - if not isinstance(entities[0], str): - # Assume we have entities specified by character offset. - # Create a temporary Doc corresponding to provided words - # (to preserve gold tokenization) and text (to preserve - # character offsets). - entdoc_words, entdoc_spaces = util.get_words_and_spaces(words, doc.text) - entdoc = Doc(doc.vocab, words=entdoc_words, spaces=entdoc_spaces) - entdoc_entities = biluo_tags_from_offsets(entdoc, entities) - # There may be some additional whitespace tokens in the - # temporary doc, so check that the annotations align with - # the provided words while building a list of BILUO labels. - entities = [] - words_offset = 0 - for i in range(len(entdoc_words)): - if words[i + words_offset] == entdoc_words[i]: - entities.append(entdoc_entities[i]) - else: - words_offset -= 1 - if len(entities) != len(words): - warnings.warn(Warnings.W029.format(text=doc.text)) - entities = ["-" for _ in words] - - # These are filled by the tagger/parser/entity recogniser - self.c.tags = self.mem.alloc(len(doc), sizeof(int)) - self.c.heads = self.mem.alloc(len(doc), sizeof(int)) - self.c.labels = self.mem.alloc(len(doc), sizeof(attr_t)) - self.c.has_dep = self.mem.alloc(len(doc), sizeof(int)) - self.c.sent_start = self.mem.alloc(len(doc), sizeof(int)) - self.c.ner = self.mem.alloc(len(doc), sizeof(Transition)) - - self.words = [None] * len(doc) - self.tags = [None] * len(doc) - self.pos = [None] * len(doc) - self.morphs = [None] * len(doc) - self.lemmas = [None] * len(doc) - self.heads = [None] * len(doc) - self.labels = [None] * len(doc) - self.ner = [None] * len(doc) - self.sent_starts = [None] * len(doc) - - # This needs to be done before we align the words - if make_projective and any(heads) and any(deps) : - heads, deps = nonproj.projectivize(heads, deps) - - # Do many-to-one alignment for misaligned tokens. - # If we over-segment, we'll have one gold word that covers a sequence - # of predicted words - # If we under-segment, we'll have one predicted word that covers a - # sequence of gold words. - # If we "mis-segment", we'll have a sequence of predicted words covering - # a sequence of gold words. That's many-to-many -- we don't do that - # except for NER spans where the start and end can be aligned. - cost, i2j, j2i, i2j_multi, j2i_multi = align([t.orth_ for t in doc], words) - - self.cand_to_gold = [(j if j >= 0 else None) for j in i2j] - self.gold_to_cand = [(i if i >= 0 else None) for i in j2i] - - self.orig = TokenAnnotation(ids=list(range(len(words))), - words=words, tags=tags, pos=pos, morphs=morphs, - lemmas=lemmas, heads=heads, deps=deps, entities=entities, - sent_starts=sent_starts, brackets=[]) - - for i, gold_i in enumerate(self.cand_to_gold): - if doc[i].text.isspace(): - self.words[i] = doc[i].text - self.tags[i] = "_SP" - self.pos[i] = "SPACE" - self.morphs[i] = None - self.lemmas[i] = None - self.heads[i] = None - self.labels[i] = None - self.ner[i] = None - self.sent_starts[i] = 0 - if gold_i is None: - if i in i2j_multi: - self.words[i] = words[i2j_multi[i]] - self.tags[i] = tags[i2j_multi[i]] - self.pos[i] = pos[i2j_multi[i]] - self.morphs[i] = morphs[i2j_multi[i]] - self.lemmas[i] = lemmas[i2j_multi[i]] - self.sent_starts[i] = sent_starts[i2j_multi[i]] - is_last = i2j_multi[i] != i2j_multi.get(i+1) - # Set next word in multi-token span as head, until last - if not is_last: - self.heads[i] = i+1 - self.labels[i] = "subtok" - else: - head_i = heads[i2j_multi[i]] - if head_i: - self.heads[i] = self.gold_to_cand[head_i] - self.labels[i] = deps[i2j_multi[i]] - ner_tag = entities[i2j_multi[i]] - # Assign O/- for many-to-one O/- NER tags - if ner_tag in ("O", "-"): - self.ner[i] = ner_tag - else: - self.words[i] = words[gold_i] - self.tags[i] = tags[gold_i] - self.pos[i] = pos[gold_i] - self.morphs[i] = morphs[gold_i] - self.lemmas[i] = lemmas[gold_i] - self.sent_starts[i] = sent_starts[gold_i] - if heads[gold_i] is None: - self.heads[i] = None - else: - self.heads[i] = self.gold_to_cand[heads[gold_i]] - self.labels[i] = deps[gold_i] - self.ner[i] = entities[gold_i] - # Assign O/- for one-to-many O/- NER tags - for j, cand_j in enumerate(self.gold_to_cand): - if cand_j is None: - if j in j2i_multi: - i = j2i_multi[j] - ner_tag = entities[j] - if ner_tag in ("O", "-"): - self.ner[i] = ner_tag - - # If there is entity annotation and some tokens remain unaligned, - # align all entities at the character level to account for all - # possible token misalignments within the entity spans - if any([e not in ("O", "-") for e in entities]) and None in self.ner: - # If the temporary entdoc wasn't created above, initialize it - if not entdoc: - entdoc_words, entdoc_spaces = util.get_words_and_spaces(words, doc.text) - entdoc = Doc(doc.vocab, words=entdoc_words, spaces=entdoc_spaces) - # Get offsets based on gold words and BILUO entities - entdoc_offsets = offsets_from_biluo_tags(entdoc, entities) - aligned_offsets = [] - aligned_spans = [] - # Filter offsets to identify those that align with doc tokens - for offset in entdoc_offsets: - span = doc.char_span(offset[0], offset[1]) - if span and not span.text.isspace(): - aligned_offsets.append(offset) - aligned_spans.append(span) - # Convert back to BILUO for doc tokens and assign NER for all - # aligned spans - biluo_tags = biluo_tags_from_offsets(doc, aligned_offsets, missing=None) - for span in aligned_spans: - for i in range(span.start, span.end): - self.ner[i] = biluo_tags[i] - - # Prevent whitespace that isn't within entities from being tagged as - # an entity. - for i in range(len(self.ner)): - if self.tags[i] == "_SP": - prev_ner = self.ner[i-1] if i >= 1 else None - next_ner = self.ner[i+1] if (i+1) < len(self.ner) else None - if prev_ner == "O" or next_ner == "O": - self.ner[i] = "O" - - cycle = nonproj.contains_cycle(self.heads) - if cycle is not None: - raise ValueError(Errors.E069.format(cycle=cycle, - cycle_tokens=" ".join([f"'{self.words[tok_id]}'" for tok_id in cycle]), - doc_tokens=" ".join(words[:50]))) - - def __len__(self): - """Get the number of gold-standard tokens. - - RETURNS (int): The number of gold-standard tokens. - """ - return self.length - - @property - def is_projective(self): - """Whether the provided syntactic annotations form a projective - dependency tree. - """ - return not nonproj.is_nonproj_tree(self.heads) - - -def docs_to_json(docs, id=0, ner_missing_tag="O"): - """Convert a list of Doc objects into the JSON-serializable format used by - the spacy train command. - - docs (iterable / Doc): The Doc object(s) to convert. - id (int): Id for the JSON. - RETURNS (dict): The data in spaCy's JSON format - - each input doc will be treated as a paragraph in the output doc - """ - if isinstance(docs, Doc): - docs = [docs] - json_doc = {"id": id, "paragraphs": []} - for i, doc in enumerate(docs): - json_para = {'raw': doc.text, "sentences": [], "cats": []} - for cat, val in doc.cats.items(): - json_cat = {"label": cat, "value": val} - json_para["cats"].append(json_cat) - ent_offsets = [(e.start_char, e.end_char, e.label_) for e in doc.ents] - biluo_tags = biluo_tags_from_offsets(doc, ent_offsets, missing=ner_missing_tag) - for j, sent in enumerate(doc.sents): - json_sent = {"tokens": [], "brackets": []} - for token in sent: - json_token = {"id": token.i, "orth": token.text} - if doc.is_tagged: - json_token["tag"] = token.tag_ - json_token["pos"] = token.pos_ - json_token["morph"] = token.morph_ - json_token["lemma"] = token.lemma_ - if doc.is_parsed: - json_token["head"] = token.head.i-token.i - json_token["dep"] = token.dep_ - json_token["ner"] = biluo_tags[token.i] - json_sent["tokens"].append(json_token) - json_para["sentences"].append(json_sent) - json_doc["paragraphs"].append(json_para) - return json_doc - - -def biluo_tags_from_offsets(doc, entities, missing="O"): - """Encode labelled spans into per-token tags, using the - Begin/In/Last/Unit/Out scheme (BILUO). - - doc (Doc): The document that the entity offsets refer to. The output tags - will refer to the token boundaries within the document. - entities (iterable): A sequence of `(start, end, label)` triples. `start` - and `end` should be character-offset integers denoting the slice into - the original string. - RETURNS (list): A list of unicode strings, describing the tags. Each tag - string will be of the form either "", "O" or "{action}-{label}", where - action is one of "B", "I", "L", "U". The string "-" is used where the - entity offsets don't align with the tokenization in the `Doc` object. - The training algorithm will view these as missing values. "O" denotes a - non-entity token. "B" denotes the beginning of a multi-token entity, - "I" the inside of an entity of three or more tokens, and "L" the end - of an entity of two or more tokens. "U" denotes a single-token entity. - - EXAMPLE: - >>> text = 'I like London.' - >>> entities = [(len('I like '), len('I like London'), 'LOC')] - >>> doc = nlp.tokenizer(text) - >>> tags = biluo_tags_from_offsets(doc, entities) - >>> assert tags == ["O", "O", 'U-LOC', "O"] - """ - # Ensure no overlapping entity labels exist - tokens_in_ents = {} - - starts = {token.idx: token.i for token in doc} - ends = {token.idx + len(token): token.i for token in doc} - biluo = ["-" for _ in doc] - # Handle entity cases - for start_char, end_char, label in entities: - for token_index in range(start_char, end_char): - if token_index in tokens_in_ents.keys(): - raise ValueError(Errors.E103.format( - span1=(tokens_in_ents[token_index][0], - tokens_in_ents[token_index][1], - tokens_in_ents[token_index][2]), - span2=(start_char, end_char, label))) - tokens_in_ents[token_index] = (start_char, end_char, label) - - start_token = starts.get(start_char) - end_token = ends.get(end_char) - # Only interested if the tokenization is correct - if start_token is not None and end_token is not None: - if start_token == end_token: - biluo[start_token] = f"U-{label}" - else: - biluo[start_token] = f"B-{label}" - for i in range(start_token+1, end_token): - biluo[i] = f"I-{label}" - biluo[end_token] = f"L-{label}" - # Now distinguish the O cases from ones where we miss the tokenization - entity_chars = set() - for start_char, end_char, label in entities: - for i in range(start_char, end_char): - entity_chars.add(i) - for token in doc: - for i in range(token.idx, token.idx + len(token)): - if i in entity_chars: - break - else: - biluo[token.i] = missing - if "-" in biluo: - ent_str = str(entities) - warnings.warn(Warnings.W030.format( - text=doc.text[:50] + "..." if len(doc.text) > 50 else doc.text, - entities=ent_str[:50] + "..." if len(ent_str) > 50 else ent_str - )) - return biluo - - -def spans_from_biluo_tags(doc, tags): - """Encode per-token tags following the BILUO scheme into Span object, e.g. - to overwrite the doc.ents. - - doc (Doc): The document that the BILUO tags refer to. - entities (iterable): A sequence of BILUO tags with each tag describing one - token. Each tags string will be of the form of either "", "O" or - "{action}-{label}", where action is one of "B", "I", "L", "U". - RETURNS (list): A sequence of Span objects. - """ - token_offsets = tags_to_entities(tags) - spans = [] - for label, start_idx, end_idx in token_offsets: - span = Span(doc, start_idx, end_idx + 1, label=label) - spans.append(span) - return spans - - -def offsets_from_biluo_tags(doc, tags): - """Encode per-token tags following the BILUO scheme into entity offsets. - - doc (Doc): The document that the BILUO tags refer to. - entities (iterable): A sequence of BILUO tags with each tag describing one - token. Each tags string will be of the form of either "", "O" or - "{action}-{label}", where action is one of "B", "I", "L", "U". - RETURNS (list): A sequence of `(start, end, label)` triples. `start` and - `end` will be character-offset integers denoting the slice into the - original string. - """ - spans = spans_from_biluo_tags(doc, tags) - return [(span.start_char, span.end_char, span.label_) for span in spans] - - -def is_punct_label(label): - return label == "P" or label.lower() == "punct"