Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2017-09-02 12:46:11 -05:00
commit 3cf3fa1704
5 changed files with 208 additions and 30 deletions

View File

@ -24,7 +24,7 @@ from thinc.linear.linear import LinearModel
from thinc.api import uniqued, wrap, flatten_add_lengths
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP, CLUSTER
from .tokens.doc import Doc
from . import util
@ -469,30 +469,103 @@ def build_tagger_model(nr_class, token_vector_width, **cfg):
return model
@layerize
def SpacyVectors(docs, drop=0.):
xp = get_array_module(docs[0].vocab.vectors.data)
width = docs[0].vocab.vectors.data.shape[1]
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype='i')
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
def foreach(layer, drop_factor=1.0):
'''Map a layer across elements in a list'''
def foreach_fwd(Xs, drop=0.):
drop *= drop_factor
ys = []
backprops = []
for X in Xs:
y, bp_y = layer.begin_update(X, drop=drop)
ys.append(y)
backprops.append(bp_y)
def foreach_bwd(d_ys, sgd=None):
d_Xs = []
for d_y, bp_y in zip(d_ys, backprops):
if bp_y is not None and bp_y is not None:
d_Xs.append(d_y, sgd=sgd)
else:
d_Xs.append(None)
return d_Xs
return ys, foreach_bwd
model = wrap(foreach_fwd, layer)
return model
def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 200)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}):
embed_lower = HashEmbed(width, nr_vector, column=1)
embed_prefix = HashEmbed(width//2, nr_vector, column=2)
embed_suffix = HashEmbed(width//2, nr_vector, column=3)
embed_shape = HashEmbed(width//2, nr_vector, column=4)
nr_vector = cfg.get('nr_vector', 5000)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
'**': clone}):
if cfg.get('low_data'):
model = (
SpacyVectors
>> flatten_add_lengths
>> with_getitem(0,
Affine(width, 300)
)
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width//2, nr_vector, column=2)
suffix = HashEmbed(width//2, nr_vector, column=3)
shape = HashEmbed(width//2, nr_vector, column=4)
trained_vectors = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
>> with_flatten(
uniqued(
(lower | prefix | suffix | shape)
>> LN(Maxout(width, width+(width//2)*3)),
column=0
)
)
)
static_vectors = (
SpacyVectors
>> with_flatten(Affine(width, 300))
)
cnn_model = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE])
>> _flatten_add_lengths
>> with_getitem(0,
uniqued(
(embed_lower | embed_prefix | embed_suffix | embed_shape)
>> Maxout(width, width+(width//2)*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
# TODO Make concatenate support lists
concatenate_lists(trained_vectors, static_vectors)
>> with_flatten(
LN(Maxout(width, width*2))
>> Residual(
(ExtractWindow(nW=1) >> zero_init(Maxout(width, width*3)))
) ** 2, pad=2
)
>> ParametricAttention(width,)
>> flatten_add_lengths
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> ReLu(width, width)
>> Residual(zero_init(Maxout(width, width)))
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = (
_preprocess_doc
>> LinearModel(nr_class, drop_factor=0.)
@ -507,3 +580,35 @@ def build_text_classifier(nr_class, width=64, **cfg):
model.lsuv = False
return model
@layerize
def flatten(seqs, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
X = ops.flatten(seqs, pad=0)
return X, finish_update
def concatenate_lists(*layers, **kwargs): # pragma: no cover
'''Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
'''
if not layers:
return noop()
drop_factor = kwargs.get('drop_factor', 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.):
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
return ys, concatenate_lists_bwd
model = wrap(concatenate_lists_fwd, concat)
return model

View File

@ -3,7 +3,7 @@
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
__title__ = 'spacy-nightly'
__version__ = '2.0.0a11'
__version__ = '2.0.0a12'
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
__uri__ = 'https://spacy.io'
__author__ = 'Explosion AI'

View File

@ -46,6 +46,43 @@ from ._ml import build_text_classifier, build_tagger_model
from .parts_of_speech import X
class SentenceSegmenter(object):
'''A simple spaCy hook, to allow custom sentence boundary detection logic
(that doesn't require the dependency parse).
To change the sentence boundary detection strategy, pass a generator
function `strategy` on initialization, or assign a new strategy to
the .strategy attribute.
Sentence detection strategies should be generators that take `Doc` objects
and yield `Span` objects for each sentence.
'''
name = 'sbd'
def __init__(self, vocab, strategy=None):
self.vocab = vocab
if strategy is None or strategy == 'on_punct':
strategy = self.split_on_punct
self.strategy = strategy
def __call__(self, doc):
doc.user_hooks['sents'] = self.strategy
@staticmethod
def split_on_punct(doc):
start = 0
seen_period = False
for i, word in enumerate(doc):
if seen_period and not word.is_punct:
yield doc[start : word.i]
start = word.i
seen_period = False
elif word.text in ['.', '!', '?']:
seen_period = True
if start < len(doc):
yield doc[start : len(doc)]
class BaseThincComponent(object):
name = None
@ -91,15 +128,20 @@ class BaseThincComponent(object):
def to_bytes(self, **exclude):
serialize = OrderedDict((
('cfg', lambda: json_dumps(self.cfg)),
('model', lambda: self.model.to_bytes()),
('vocab', lambda: self.vocab.to_bytes())
))
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, **exclude):
def load_model(b):
if self.model is True:
self.model = self.Model()
self.model = self.Model(**self.cfg)
self.model.from_bytes(b)
deserialize = OrderedDict((
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
('model', lambda b: self.model.from_bytes(b)),
('vocab', lambda b: self.vocab.from_bytes(b))
))
@ -108,19 +150,22 @@ class BaseThincComponent(object):
def to_disk(self, path, **exclude):
serialize = OrderedDict((
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))),
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
('vocab', lambda p: self.vocab.to_disk(p)),
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg)))
('vocab', lambda p: self.vocab.to_disk(p))
))
util.to_disk(path, serialize, exclude)
def from_disk(self, path, **exclude):
def load_model(p):
if self.model is True:
self.model = self.Model()
self.model = self.Model(**self.cfg)
self.model.from_bytes(p.open('rb').read())
deserialize = OrderedDict((
('model', lambda p: self.model.from_bytes(p.open('rb').read())),
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
('model', load_model),
('vocab', lambda p: self.vocab.from_disk(p)),
('cfg', lambda p: self.cfg.update(_load_cfg(p)))
))
util.from_disk(path, deserialize, exclude)
return self
@ -601,12 +646,13 @@ class TextCategorizer(BaseThincComponent):
return mean_square_error, d_scores
def begin_training(self, gold_tuples=tuple(), pipeline=None):
if pipeline:
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
token_vector_width = pipeline[0].model.nO
else:
token_vector_width = 64
if self.model is True:
self.model = self.Model(len(self.labels), token_vector_width)
self.model = self.Model(len(self.labels), token_vector_width,
**self.cfg)
cdef class EntityRecognizer(LinearParser):

View File

@ -170,7 +170,7 @@ def get_model_meta(path):
meta = read_json(meta_path)
for setting in ['lang', 'name', 'version']:
if setting not in meta or not meta[setting]:
raise ValueError('No valid '%s' setting found in model meta.json' % setting)
raise ValueError("No valid '%s' setting found in model meta.json" % setting)
return meta

View File

@ -90,6 +90,33 @@ cdef class Vectors:
def most_similar(self, key):
raise NotImplementedError
def from_glove(self, path):
'''Load GloVe vectors from a directory. Assumes binary format,
that the vocab is in a vocab.txt, and that vectors are named
vectors.{size}.[fd].bin, e.g. vectors.128.f.bin for 128d float32
vectors, vectors.300.d.bin for 300d float64 (double) vectors, etc.
By default GloVe outputs 64-bit vectors.'''
path = util.ensure_path(path)
for name in path.iterdir():
if name.parts[-1].startswith('vectors'):
_, dims, dtype, _2 = name.parts[-1].split('.')
self.width = int(dims)
break
else:
raise IOError("Expected file named e.g. vectors.128.f.bin")
bin_loc = path / 'vectors.{dims}.{dtype}.bin'.format(dims=dims,
dtype=dtype)
with bin_loc.open('rb') as file_:
self.data = numpy.fromfile(file_, dtype='float64')
self.data = numpy.ascontiguousarray(self.data, dtype='float32')
n = 0
with (path / 'vocab.txt').open('r') as file_:
for line in file_:
self.add(line.strip())
n += 1
if (self.data.size % self.width) == 0:
self.data
def to_disk(self, path, **exclude):
serializers = OrderedDict((
('vectors', lambda p: numpy.save(p.open('wb'), self.data, allow_pickle=False)),