Add beam decoding to parser, to allow NER uncertainties

This commit is contained in:
Matthew Honnibal 2017-07-20 15:02:55 +02:00
parent 0ca5832427
commit 3da1063b36
4 changed files with 140 additions and 10 deletions

View File

@ -10,6 +10,8 @@ from libc.stdint cimport uint32_t
from libc.string cimport memcpy from libc.string cimport memcpy
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from collections import OrderedDict from collections import OrderedDict
from thinc.extra.search cimport Beam
import numpy
from .stateclass cimport StateClass from .stateclass cimport StateClass
from ._state cimport StateC, is_space_token from ._state cimport StateC, is_space_token
@ -510,3 +512,23 @@ cdef class ArcEager(TransitionSystem):
"State at failure:\n" "State at failure:\n"
"%s" % (self.n_moves, stcls.print_state(gold.words))) "%s" % (self.n_moves, stcls.print_state(gold.words)))
assert n_gold >= 1 assert n_gold >= 1
def get_beam_annot(self, Beam beam):
length = (<StateClass>beam.at(0)).c.length
heads = [{} for _ in range(length)]
deps = [{} for _ in range(length)]
probs = beam.probs
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
self.finalize_state(stcls.c)
if stcls.is_final():
prob = probs[i]
for j in range(stcls.c.length):
head = j + stcls.c._sent[j].head
dep = stcls.c._sent[j].dep
heads[j].setdefault(head, 0.0)
heads[j][head] += prob
deps[j].setdefault(dep, 0.0)
deps[j][dep] += prob
return heads, deps

View File

@ -2,7 +2,10 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from thinc.typedefs cimport weight_t from thinc.typedefs cimport weight_t
from thinc.extra.search cimport Beam
from collections import OrderedDict from collections import OrderedDict
import numpy
from thinc.neural.ops import NumpyOps
from .stateclass cimport StateClass from .stateclass cimport StateClass
from ._state cimport StateC from ._state cimport StateC
@ -122,6 +125,22 @@ cdef class BiluoPushDown(TransitionSystem):
gold.c.ner[i] = self.lookup_transition(gold.ner[i]) gold.c.ner[i] = self.lookup_transition(gold.ner[i])
return gold return gold
def get_beam_annot(self, Beam beam):
entities = {}
probs = beam.probs
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if stcls.is_final():
self.finalize_state(stcls.c)
prob = probs[i]
for j in range(stcls.c._e_i):
start = stcls.c._ents[j].start
end = stcls.c._ents[j].end
label = stcls.c._ents[j].label
entities.setdefault((start, end, label), 0.0)
entities[(start, end, label)] += prob
return entities
cdef Transition lookup_transition(self, object name) except *: cdef Transition lookup_transition(self, object name) except *:
cdef attr_t label cdef attr_t label
if name == '-' or name == None: if name == '-' or name == None:

View File

@ -29,6 +29,7 @@ from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example from thinc.extra.eg cimport Example
from thinc.extra.search cimport Beam
from cymem.cymem cimport Pool, Address from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64 from murmurhash.mrmr cimport hash64
@ -110,7 +111,6 @@ cdef class precompute_hiddens:
self.nO = cached.shape[2] self.nO = cached.shape[2]
self.nP = getattr(lower_model, 'nP', 1) self.nP = getattr(lower_model, 'nP', 1)
self.ops = lower_model.ops self.ops = lower_model.ops
self._features = numpy.zeros((batch_size, self.nO*self.nP), dtype='f')
self._is_synchronized = False self._is_synchronized = False
self._cuda_stream = cuda_stream self._cuda_stream = cuda_stream
self._cached = cached self._cached = cached
@ -127,13 +127,12 @@ cdef class precompute_hiddens:
return self.begin_update(X)[0] return self.begin_update(X)[0]
def begin_update(self, token_ids, drop=0.): def begin_update(self, token_ids, drop=0.):
self._features.fill(0) cdef np.ndarray state_vector = numpy.zeros((token_ids.shape[0], self.nO*self.nP), dtype='f')
# This is tricky, but (assuming GPU available); # This is tricky, but (assuming GPU available);
# - Input to forward on CPU # - Input to forward on CPU
# - Output from forward on CPU # - Output from forward on CPU
# - Input to backward on GPU! # - Input to backward on GPU!
# - Output from backward on GPU # - Output from backward on GPU
cdef np.ndarray state_vector = self._features[:len(token_ids)]
bp_hiddens = self._bp_hiddens bp_hiddens = self._bp_hiddens
feat_weights = self.get_feat_weights() feat_weights = self.get_feat_weights()
@ -305,7 +304,7 @@ cdef class Parser:
def __reduce__(self): def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None) return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc doc): def __call__(self, Doc doc, beam_width=None, beam_density=None):
""" """
Apply the parser or entity recognizer, setting the annotations onto the Doc object. Apply the parser or entity recognizer, setting the annotations onto the Doc object.
@ -314,11 +313,26 @@ cdef class Parser:
Returns: Returns:
None None
""" """
states = self.parse_batch([doc], [doc.tensor]) if beam_width is None:
self.set_annotations([doc], states) beam_width = self.cfg.get('beam_width', 1)
return doc if beam_density is None:
beam_density = self.cfg.get('beam_density', 0.001)
cdef Beam beam
if beam_width == 1:
states = self.parse_batch([doc], [doc.tensor])
self.set_annotations([doc], states)
return doc
else:
beam = self.beam_parse([doc], [doc.tensor],
beam_width=beam_width, beam_density=beam_density)[0]
output = self.moves.get_beam_annot(beam)
state = <StateClass>beam.at(0)
self.set_annotations([doc], [state])
_cleanup(beam)
return output
def pipe(self, docs, int batch_size=1000, int n_threads=2): def pipe(self, docs, int batch_size=1000, int n_threads=2,
beam_width=1, beam_density=0.001):
""" """
Process a stream of documents. Process a stream of documents.
@ -336,7 +350,11 @@ cdef class Parser:
for docs in cytoolz.partition_all(batch_size, docs): for docs in cytoolz.partition_all(batch_size, docs):
docs = list(docs) docs = list(docs)
tokvecs = [d.tensor for d in docs] tokvecs = [d.tensor for d in docs]
parse_states = self.parse_batch(docs, tokvecs) if beam_width == 1:
parse_states = self.parse_batch(docs, tokvecs)
else:
parse_states = self.beam_parse(docs, tokvecs,
beam_width=beam_width, beam_density=beam_density)
self.set_annotations(docs, parse_states) self.set_annotations(docs, parse_states)
yield from docs yield from docs
@ -404,6 +422,45 @@ cdef class Parser:
next_step.push_back(st) next_step.push_back(st)
return states return states
def beam_parse(self, docs, tokvecses, int beam_width=8, float beam_density=0.001):
cdef Beam beam
cdef np.ndarray scores
cdef Doc doc
cdef int nr_class = self.moves.n_moves
cdef StateClass stcls, output
tokvecs = self.model[0].ops.flatten(tokvecses)
cuda_stream = get_cuda_stream()
state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs,
cuda_stream, 0.0)
beams = []
cdef int offset = 0
for doc in docs:
beam = Beam(nr_class, beam_width, min_density=beam_density)
beam.initialize(self.moves.init_beam_state, doc.length, doc.c)
for i in range(beam.width):
stcls = <StateClass>beam.at(i)
stcls.c.offset = offset
offset += len(doc)
beam.check_done(_check_final_state, NULL)
while not beam.is_done:
states = []
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
states.append(stcls)
token_ids = self.get_token_ids(states)
vectors = state2vec(token_ids)
scores = vec2scores(vectors)
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.is_final():
self.moves.set_valid(beam.is_valid[i], stcls.c)
for j in range(nr_class):
beam.scores[i][j] = scores[i, j]
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
beams.append(beam)
return beams
cdef void _parse_step(self, StateC* state, cdef void _parse_step(self, StateC* state,
const float* feat_weights, const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil: int nr_class, int nr_feat, int nr_piece) nogil:
@ -560,7 +617,8 @@ cdef class Parser:
dtype='i', order='C') dtype='i', order='C')
c_ids = <int*>ids.data c_ids = <int*>ids.data
for i, state in enumerate(states): for i, state in enumerate(states):
state.c.set_context_tokens(c_ids, n_tokens) if not state.is_final():
state.c.set_context_tokens(c_ids, n_tokens)
c_ids += ids.shape[1] c_ids += ids.shape[1]
return ids return ids
@ -762,3 +820,30 @@ cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actio
mode = i mode = i
score = scores[i] score = scores[i]
return mode return mode
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest.c, moves[clas].label)
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
state = <StateClass>_state
if state.c.is_final():
return 1
else:
return state.c.hash()

View File

@ -137,6 +137,10 @@ cdef class TransitionSystem:
"the entity recognizer\n" "the entity recognizer\n"
"The transition system has %d actions." % (self.n_moves)) "The transition system has %d actions." % (self.n_moves))
def get_class_name(self, int clas):
act = self.c[clas]
return self.move_name(act.move, act.label)
def add_action(self, int action, label_name): def add_action(self, int action, label_name):
cdef attr_t label_id cdef attr_t label_id
if not isinstance(label_name, int): if not isinstance(label_name, int):