From 3dba984db9e9fc0adb09a01a546845ea52571edf Mon Sep 17 00:00:00 2001 From: Kevin Humphreys Date: Fri, 26 Aug 2022 01:30:44 +0200 Subject: [PATCH] fix type properly --- spacy/pipeline/entityruler.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/spacy/pipeline/entityruler.py b/spacy/pipeline/entityruler.py index e5852e4e8..1e816ab16 100644 --- a/spacy/pipeline/entityruler.py +++ b/spacy/pipeline/entityruler.py @@ -26,9 +26,9 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]] "phrase_matcher_attr": None, "validate": False, "overwrite_ents": False, + "fuzzy": 0.0, "ent_id_sep": DEFAULT_ENT_ID_SEP, "scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"}, - "fuzzy": None, }, default_score_weights={ "ents_f": 1.0, @@ -43,9 +43,9 @@ def make_entity_ruler( phrase_matcher_attr: Optional[Union[int, str]], validate: bool, overwrite_ents: bool, + fuzzy: float, ent_id_sep: str, scorer: Optional[Callable], - fuzzy: Optional[float], ): return EntityRuler( nlp, @@ -53,9 +53,9 @@ def make_entity_ruler( phrase_matcher_attr=phrase_matcher_attr, validate=validate, overwrite_ents=overwrite_ents, + fuzzy=fuzzy, ent_id_sep=ent_id_sep, scorer=scorer, - fuzzy=fuzzy, ) @@ -87,10 +87,10 @@ class EntityRuler(Pipe): phrase_matcher_attr: Optional[Union[int, str]] = None, validate: bool = False, overwrite_ents: bool = False, + fuzzy: float = 0, ent_id_sep: str = DEFAULT_ENT_ID_SEP, patterns: Optional[List[PatternType]] = None, scorer: Optional[Callable] = entity_ruler_score, - fuzzy: float = None, ) -> None: """Initialize the entity ruler. If patterns are supplied here, they need to be a list of dictionaries with a `"label"` and `"pattern"` @@ -122,7 +122,8 @@ class EntityRuler(Pipe): self.token_patterns = defaultdict(list) # type: ignore self.phrase_patterns = defaultdict(list) # type: ignore self._validate = validate - self.matcher = Matcher(nlp.vocab, validate=validate, fuzzy=fuzzy) + self.fuzzy = fuzzy + self.matcher = Matcher(nlp.vocab, validate=validate, fuzzy=self.fuzzy) self.phrase_matcher_attr = phrase_matcher_attr self.phrase_matcher = PhraseMatcher( nlp.vocab, attr=self.phrase_matcher_attr, validate=validate @@ -132,7 +133,6 @@ class EntityRuler(Pipe): if patterns is not None: self.add_patterns(patterns) self.scorer = scorer - self.fuzzy = fuzzy def __len__(self) -> int: """The number of all patterns added to the entity ruler."""