Merge pull request #8580 from explosion/autoblack

Auto-format code with black
This commit is contained in:
Ines Montani 2021-07-03 13:15:07 +10:00 committed by GitHub
commit 3dcb747980
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 21 additions and 20 deletions

View File

@ -255,7 +255,7 @@ def test_token_api_non_conjuncts(en_vocab):
def test_missing_head_dep(en_vocab):
""" Check that the Doc constructor and Example.from_dict parse missing information the same"""
"""Check that the Doc constructor and Example.from_dict parse missing information the same"""
heads = [1, 1, 1, 1, 2, None] # element 5 is missing
deps = ["", "ROOT", "dobj", "cc", "conj", None] # element 0 and 5 are missing
words = ["I", "like", "London", "and", "Berlin", "."]

View File

@ -5,7 +5,7 @@ import pytest
"text,expected_tokens", [("d'un", ["d'", "un"]), ("s'ha", ["s'", "ha"])]
)
def test_contractions(ca_tokenizer, text, expected_tokens):
""" Test that the contractions are split into two tokens"""
"""Test that the contractions are split into two tokens"""
tokens = ca_tokenizer(text)
assert len(tokens) == 2
assert [t.text for t in tokens] == expected_tokens

View File

@ -5,7 +5,7 @@ import pytest
"text,expected_tokens", [("c'è", ["c'", "è"]), ("l'ha", ["l'", "ha"])]
)
def test_contractions(it_tokenizer, text, expected_tokens):
""" Test that the contractions are split into two tokens"""
"""Test that the contractions are split into two tokens"""
tokens = it_tokenizer(text)
assert len(tokens) == 2
assert [t.text for t in tokens] == expected_tokens

View File

@ -304,7 +304,7 @@ def test_empty_ner():
def test_ruler_before_ner():
""" Test that an NER works after an entity_ruler: the second can add annotations """
"""Test that an NER works after an entity_ruler: the second can add annotations"""
nlp = English()
# 1 : Entity Ruler - should set "this" to B and everything else to empty
@ -334,7 +334,7 @@ def test_ner_constructor(en_vocab):
def test_ner_before_ruler():
""" Test that an entity_ruler works after an NER: the second can overwrite O annotations """
"""Test that an entity_ruler works after an NER: the second can overwrite O annotations"""
nlp = English()
# 1: untrained NER - should set everything to O
@ -355,7 +355,7 @@ def test_ner_before_ruler():
def test_block_ner():
""" Test functionality for blocking tokens so they can't be in a named entity """
"""Test functionality for blocking tokens so they can't be in a named entity"""
# block "Antti L Korhonen" from being a named entity
nlp = English()
nlp.add_pipe("blocker", config={"start": 2, "end": 5})

View File

@ -197,7 +197,7 @@ def test_issue3555(en_vocab):
def test_issue3611():
""" Test whether adding n-grams in the textcat works even when n > token length of some docs """
"""Test whether adding n-grams in the textcat works even when n > token length of some docs"""
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
@ -282,7 +282,7 @@ def test_issue3830_with_subtok():
def test_issue3839(en_vocab):
"""Test that match IDs returned by the matcher are correct, are in the string """
"""Test that match IDs returned by the matcher are correct, are in the string"""
doc = Doc(en_vocab, words=["terrific", "group", "of", "people"])
matcher = Matcher(en_vocab)
match_id = "PATTERN"
@ -366,7 +366,7 @@ def test_issue3951(en_vocab):
def test_issue3959():
""" Ensure that a modified pos attribute is serialized correctly."""
"""Ensure that a modified pos attribute is serialized correctly."""
nlp = English()
doc = nlp(
"displaCy uses JavaScript, SVG and CSS to show you how computers understand language"

View File

@ -38,7 +38,7 @@ def test_issue4002(en_vocab):
def test_issue4030():
""" Test whether textcat works fine with empty doc """
"""Test whether textcat works fine with empty doc"""
unique_classes = ["offensive", "inoffensive"]
x_train = [
"This is an offensive text",
@ -237,7 +237,7 @@ def test_issue4190():
def test_issue4267():
""" Test that running an entity_ruler after ner gives consistent results"""
"""Test that running an entity_ruler after ner gives consistent results"""
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("PEOPLE")
@ -288,7 +288,7 @@ def test_multiple_predictions():
def test_issue4313():
""" This should not crash or exit with some strange error code """
"""This should not crash or exit with some strange error code"""
beam_width = 16
beam_density = 0.0001
nlp = English()

View File

@ -152,7 +152,7 @@ def test_issue4707():
def test_issue4725_1():
""" Ensure the pickling of the NER goes well"""
"""Ensure the pickling of the NER goes well"""
vocab = Vocab(vectors_name="test_vocab_add_vector")
nlp = English(vocab=vocab)
config = {

View File

@ -96,7 +96,7 @@ def test_issue5137():
def test_issue5141(en_vocab):
""" Ensure an empty DocBin does not crash on serialization """
"""Ensure an empty DocBin does not crash on serialization"""
doc_bin = DocBin(attrs=["DEP", "HEAD"])
assert list(doc_bin.get_docs(en_vocab)) == []
doc_bin_bytes = doc_bin.to_bytes()

View File

@ -238,7 +238,7 @@ def test_create_nlp_from_config_multiple_instances():
def test_serialize_nlp():
""" Create a custom nlp pipeline from config and ensure it serializes it correctly """
"""Create a custom nlp pipeline from config and ensure it serializes it correctly"""
nlp_config = Config().from_str(nlp_config_string)
nlp = load_model_from_config(nlp_config, auto_fill=True)
nlp.get_pipe("tagger").add_label("A")
@ -258,7 +258,7 @@ def test_serialize_nlp():
def test_serialize_custom_nlp():
""" Create a custom nlp pipeline and ensure it serializes it correctly"""
"""Create a custom nlp pipeline and ensure it serializes it correctly"""
nlp = English()
parser_cfg = dict()
parser_cfg["model"] = {"@architectures": "my_test_parser"}
@ -279,7 +279,7 @@ def test_serialize_custom_nlp():
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
)
def test_serialize_parser(parser_config_string):
""" Create a non-default parser config to check nlp serializes it correctly """
"""Create a non-default parser config to check nlp serializes it correctly"""
nlp = English()
model_config = Config().from_str(parser_config_string)
parser = nlp.add_pipe("parser", config=model_config)

View File

@ -275,7 +275,7 @@ def test_util_minibatch(doc_sizes, expected_batches):
],
)
def test_util_minibatch_oversize(doc_sizes, expected_batches):
""" Test that oversized documents are returned in their own batch"""
"""Test that oversized documents are returned in their own batch"""
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000

View File

@ -69,7 +69,7 @@ def read_conllx(
ner_tag_pattern="",
ner_map=None,
):
""" Yield docs, one for each sentence """
"""Yield docs, one for each sentence"""
vocab = Vocab() # need vocab to make a minimal Doc
for sent in input_data.strip().split("\n\n"):
lines = sent.strip().split("\n")

View File

@ -186,7 +186,7 @@ class Corpus:
def read_docbin(
self, vocab: Vocab, locs: Iterable[Union[str, Path]]
) -> Iterator[Doc]:
""" Yield training examples as example dicts """
"""Yield training examples as example dicts"""
i = 0
for loc in locs:
loc = util.ensure_path(loc)

View File

@ -110,6 +110,7 @@ def wandb_logger(
):
try:
import wandb
# test that these are available
from wandb import init, log, join # noqa: F401
except ImportError: