Experimental character-based pretraining (#5700)

* Use cosine loss in Cloze multitask

* Fix char_embed for gpu

* Call resume_training for base model in train CLI

* Fix bilstm_depth default in pretrain command

* Implement character-based pretraining objective

* Use chars loss in ClozeMultitask

* Add method to decode predicted characters

* Fix number characters

* Rescale gradients for mlm

* Fix char embed+vectors in ml

* Fix pipes

* Fix pretrain args

* Move get_characters_loss

* Fix import

* Fix import

* Mention characters loss option in pretrain

* Remove broken 'self attention' option in pretrain

* Revert "Remove broken 'self attention' option in pretrain"

This reverts commit 56b820f6af.

* Document 'characters' objective of pretrain
This commit is contained in:
Matthew Honnibal 2020-07-05 15:48:39 +02:00 committed by GitHub
parent 86d13a9fb8
commit 3e78e82a83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 92 additions and 33 deletions

View File

@ -14,7 +14,7 @@ from thinc.api import with_getitem, flatten_add_lengths
from thinc.api import uniqued, wrap, noop
from thinc.linear.linear import LinearModel
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural.util import get_array_module, copy_array, to_categorical
from thinc.neural.optimizers import Adam
from thinc import describe
@ -840,6 +840,8 @@ def masked_language_model(vocab, model, mask_prob=0.15):
def mlm_backward(d_output, sgd=None):
d_output *= 1 - mask
# Rescale gradient for number of instances.
d_output *= mask.size - mask.sum()
return backprop(d_output, sgd=sgd)
return output, mlm_backward
@ -944,7 +946,7 @@ class CharacterEmbed(Model):
# for the tip.
nCv = self.ops.xp.arange(self.nC)
for doc in docs:
doc_ids = doc.to_utf8_array(nr_char=self.nC)
doc_ids = self.ops.asarray(doc.to_utf8_array(nr_char=self.nC))
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
# incantation do I chant to get
@ -986,3 +988,17 @@ def get_cossim_loss(yh, y, ignore_zeros=False):
losses[zero_indices] = 0
loss = losses.sum()
return loss, -d_yh
def get_characters_loss(ops, docs, prediction, nr_char=10):
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
target_ids = target_ids.reshape((-1,))
target = ops.asarray(to_categorical(target_ids, nb_classes=256), dtype="f")
target = target.reshape((-1, 256*nr_char))
diff = prediction - target
loss = (diff**2).sum()
d_target = diff / float(prediction.shape[0])
return loss, d_target

View File

@ -18,7 +18,8 @@ from ..errors import Errors
from ..tokens import Doc
from ..attrs import ID, HEAD
from .._ml import Tok2Vec, flatten, chain, create_default_optimizer
from .._ml import masked_language_model, get_cossim_loss
from .._ml import masked_language_model, get_cossim_loss, get_characters_loss
from .._ml import MultiSoftmax
from .. import util
from .train import _load_pretrained_tok2vec
@ -42,7 +43,7 @@ from .train import _load_pretrained_tok2vec
bilstm_depth=("Depth of BiLSTM layers (requires PyTorch)", "option", "lstm", int),
embed_rows=("Number of embedding rows", "option", "er", int),
loss_func=(
"Loss function to use for the objective. Either 'L2' or 'cosine'",
"Loss function to use for the objective. Either 'characters', 'L2' or 'cosine'",
"option",
"L",
str,
@ -85,11 +86,11 @@ def pretrain(
output_dir,
width=96,
conv_depth=4,
bilstm_depth=0,
cnn_pieces=3,
sa_depth=0,
use_chars=False,
cnn_window=1,
bilstm_depth=0,
use_chars=False,
embed_rows=2000,
loss_func="cosine",
use_vectors=False,
@ -124,11 +125,7 @@ def pretrain(
config[key] = str(config[key])
util.fix_random_seed(seed)
has_gpu = prefer_gpu()
if has_gpu:
import torch
torch.set_default_tensor_type("torch.cuda.FloatTensor")
has_gpu = prefer_gpu(gpu_id=1)
msg.info("Using GPU" if has_gpu else "Not using GPU")
output_dir = Path(output_dir)
@ -174,6 +171,7 @@ def pretrain(
subword_features=not use_chars, # Set to False for Chinese etc
cnn_maxout_pieces=cnn_pieces, # If set to 1, use Mish activation.
),
objective=loss_func
)
# Load in pretrained weights
if init_tok2vec is not None:
@ -264,7 +262,10 @@ def make_update(model, docs, optimizer, drop=0.0, objective="L2"):
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs, drop=drop)
loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective)
if objective == "characters":
loss, gradients = get_characters_loss(model.ops, docs, predictions)
else:
loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective)
backprop(gradients, sgd=optimizer)
# Don't want to return a cupy object here
# The gradients are modified in-place by the BERT MLM,
@ -326,16 +327,23 @@ def get_vectors_loss(ops, docs, prediction, objective="L2"):
return loss, d_target
def create_pretraining_model(nlp, tok2vec):
def create_pretraining_model(nlp, tok2vec, objective="cosine", nr_char=10):
"""Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
"""
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = chain(
LN(Maxout(300, pieces=3)), Affine(output_size, drop_factor=0.0)
)
if objective == "characters":
out_sizes = [256] * nr_char
output_layer = chain(
LN(Maxout(300, pieces=3)),
MultiSoftmax(out_sizes, 300)
)
else:
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = chain(
LN(Maxout(300, pieces=3)), Affine(output_size, drop_factor=0.0)
)
# This is annoying, but the parser etc have the flatten step after
# the tok2vec. To load the weights in cleanly, we need to match
# the shape of the models' components exactly. So what we cann

View File

@ -285,7 +285,7 @@ def train(
if base_model and not pipes_added:
# Start with an existing model, use default optimizer
optimizer = create_default_optimizer(Model.ops)
optimizer = nlp.resume_training(device=use_gpu)
else:
# Start with a blank model, call begin_training
cfg = {"device": use_gpu}

View File

@ -49,6 +49,14 @@ def Tok2Vec(width, embed_size, **kwargs):
>> LN(Maxout(width, width * 5, pieces=3)),
column=cols.index(ORTH),
)
elif char_embed:
embed = concatenate_lists(
CharacterEmbed(nM=64, nC=8),
FeatureExtracter(cols) >> with_flatten(glove),
)
reduce_dimensions = LN(
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
)
else:
embed = uniqued(
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
@ -81,7 +89,8 @@ def Tok2Vec(width, embed_size, **kwargs):
)
else:
tok2vec = FeatureExtracter(cols) >> with_flatten(
embed >> convolution ** conv_depth, pad=conv_depth
embed
>> convolution ** conv_depth, pad=conv_depth
)
if bilstm_depth >= 1:

View File

@ -33,6 +33,7 @@ from .._ml import build_text_classifier, build_simple_cnn_text_classifier
from .._ml import build_bow_text_classifier, build_nel_encoder
from .._ml import link_vectors_to_models, zero_init, flatten
from .._ml import masked_language_model, create_default_optimizer, get_cossim_loss
from .._ml import MultiSoftmax, get_characters_loss
from ..errors import Errors, TempErrors, Warnings
from .. import util
@ -846,11 +847,15 @@ class MultitaskObjective(Tagger):
class ClozeMultitask(Pipe):
@classmethod
def Model(cls, vocab, tok2vec, **cfg):
output_size = vocab.vectors.data.shape[1]
output_layer = chain(
LayerNorm(Maxout(output_size, tok2vec.nO, pieces=3)),
zero_init(Affine(output_size, output_size, drop_factor=0.0))
)
if cfg["objective"] == "characters":
out_sizes = [256] * cfg.get("nr_char", 4)
output_layer = MultiSoftmax(out_sizes)
else:
output_size = vocab.vectors.data.shape[1]
output_layer = chain(
LayerNorm(Maxout(output_size, tok2vec.nO, pieces=3)),
zero_init(Affine(output_size, output_size, drop_factor=0.0))
)
model = chain(tok2vec, output_layer)
model = masked_language_model(vocab, model)
model.tok2vec = tok2vec
@ -861,6 +866,8 @@ class ClozeMultitask(Pipe):
self.vocab = vocab
self.model = model
self.cfg = cfg
self.cfg.setdefault("objective", "characters")
self.cfg.setdefault("nr_char", 4)
def set_annotations(self, docs, dep_ids, tensors=None):
pass
@ -869,7 +876,8 @@ class ClozeMultitask(Pipe):
tok2vec=None, sgd=None, **kwargs):
link_vectors_to_models(self.vocab)
if self.model is True:
self.model = self.Model(self.vocab, tok2vec)
kwargs.update(self.cfg)
self.model = self.Model(self.vocab, tok2vec, **kwargs)
X = self.model.ops.allocate((5, self.model.tok2vec.nO))
self.model.output_layer.begin_training(X)
if sgd is None:
@ -883,13 +891,16 @@ class ClozeMultitask(Pipe):
return tokvecs, vectors
def get_loss(self, docs, vectors, prediction):
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = vectors[ids]
loss, gradient = get_cossim_loss(prediction, target, ignore_zeros=True)
if self.cfg["objective"] == "characters":
loss, gradient = get_characters_loss(self.model.ops, docs, prediction)
else:
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = vectors[ids]
loss, gradient = get_cossim_loss(prediction, target, ignore_zeros=True)
return float(loss), gradient
def update(self, docs, golds, drop=0., sgd=None, losses=None):
@ -906,6 +917,20 @@ class ClozeMultitask(Pipe):
if losses is not None:
losses[self.name] += loss
@staticmethod
def decode_utf8_predictions(char_array):
# The format alternates filling from start and end, and 255 is missing
words = []
char_array = char_array.reshape((char_array.shape[0], -1, 256))
nr_char = char_array.shape[1]
char_array = char_array.argmax(axis=-1)
for row in char_array:
starts = [chr(c) for c in row[::2] if c != 255]
ends = [chr(c) for c in row[1::2] if c != 255]
word = "".join(starts + list(reversed(ends)))
words.append(word)
return words
@component("textcat", assigns=["doc.cats"])
class TextCategorizer(Pipe):
@ -1069,6 +1094,7 @@ cdef class DependencyParser(Parser):
assigns = ["token.dep", "token.is_sent_start", "doc.sents"]
requires = []
TransitionSystem = ArcEager
nr_feature = 8
@property
def postprocesses(self):

View File

@ -473,7 +473,7 @@ $ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir]
| `--use-chars`, `-chr` <Tag variant="new">2.2.2</Tag> | flag | Whether to use character-based embedding. |
| `--sa-depth`, `-sa` <Tag variant="new">2.2.2</Tag> | option | Depth of self-attention layers. |
| `--embed-rows`, `-er` | option | Number of embedding rows. |
| `--loss-func`, `-L` | option | Loss function to use for the objective. Either `"L2"` or `"cosine"`. |
| `--loss-func`, `-L` | option | Loss function to use for the objective. Either `"cosine"`, `"L2"` or `"characters"`. |
| `--dropout`, `-d` | option | Dropout rate. |
| `--batch-size`, `-bs` | option | Number of words per training batch. |
| `--max-length`, `-xw` | option | Maximum words per example. Longer examples are discarded. |