Improve pretrain textcat example

This commit is contained in:
Matthew Honnibal 2018-11-03 17:44:12 +00:00
parent c87c50af62
commit 3e7a96f99d

View File

@ -1,4 +1,18 @@
'''Not sure if this is useful -- try training the Tensorizer component.'''
'''This script is experimental.
Try pre-training the CNN component of the text categorizer using a cheap
language modelling-like objective. Specifically, we load pre-trained vectors
(from something like word2vec, GloVe, FastText etc), and use the CNN to
predict the tokens' pre-trained vectors. This isn't as easy as it sounds:
we're not merely doing compression here, because heavy dropout is applied,
including over the input words. This means the model must often (50% of the time)
use the context in order to predict the word.
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
corpus, and then training with only 100 labels. Note that it's a bit dirty to
pre-train with the development data, but also not *so* terrible: we're not using
the development labels, after all --- only the unlabelled text.
'''
import plac
import random
import spacy
@ -14,23 +28,28 @@ import numpy
def load_texts(limit=0):
train, dev = thinc.extra.datasets.imdb()
train_texts, train_labels = zip(*train)
dev_texts, dev_labels = zip(*train)
train_texts = list(train_texts)
dev_texts = list(dev_texts)
random.shuffle(train_texts)
random.shuffle(dev_texts)
if limit >= 1:
return train_texts[:limit]
else:
return train_texts
return list(train_texts) + list(dev_texts)
def load_textcat_data(limit=0, split=0.8):
def load_textcat_data(limit=0):
"""Load data from the IMDB dataset."""
# Partition off part of the train data for evaluation
train_data, _ = thinc.extra.datasets.imdb()
train_data, eval_data = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
eval_texts, eval_labels = zip(*eval_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
eval_cats = [{'POSITIVE': bool(y)} for y in eval_labels]
return (texts, cats), (eval_texts, eval_cats)
def prefer_gpu():
@ -50,10 +69,11 @@ def build_textcat_model(tok2vec, nr_class, width):
with Model.define_operators({'>>': chain}):
model = (
block_gradients(tok2vec)
tok2vec
>> flatten_add_lengths
>> Pooling(sum_pool, max_pool)
>> Residual(LayerNorm(Maxout(width*2, width*2, pieces=3)))
>> Residual(LayerNorm(Maxout(width*2, width*2, pieces=3)))
>> zero_init(Affine(nr_class, width*2, drop_factor=0.0))
>> logistic
)
@ -91,8 +111,9 @@ def train_tensorizer(nlp, texts, dropout, n_iter):
print(losses)
return optimizer
def train_textcat(nlp, optimizer, n_texts, n_iter=10):
def train_textcat(nlp, n_texts, n_iter=10):
textcat = nlp.get_pipe('textcat')
tok2vec_weights = textcat.model.tok2vec.to_bytes()
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
print("Using {} examples ({} training, {} evaluation)"
.format(n_texts, len(train_texts), len(dev_texts)))
@ -102,6 +123,8 @@ def train_textcat(nlp, optimizer, n_texts, n_iter=10):
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
textcat.model.tok2vec.from_bytes(tok2vec_weights)
print("Training the model...")
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
for i in range(n_iter):
@ -120,24 +143,12 @@ def train_textcat(nlp, optimizer, n_texts, n_iter=10):
scores['textcat_r'], scores['textcat_f']))
def load_textcat_data(limit=0, split=0.8):
"""Load data from the IMDB dataset."""
# Partition off part of the train data for evaluation
train_data, _ = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def evaluate_textcat(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 1e-8 # True positives
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 1e-8 # True negatives
tp = 1e-8
fp = 1e-8
tn = 1e-8
fn = 1e-8
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
@ -167,7 +178,7 @@ def evaluate_textcat(tokenizer, textcat, texts, cats):
vectors_model=("Name or path to vectors model to learn from")
)
def main(width: int, embed_size: int, vectors_model,
pretrain_iters=30, train_iters=30, train_examples=100):
pretrain_iters=30, train_iters=30, train_examples=1000):
random.seed(0)
cupy.random.seed(0)
numpy.random.seed(0)
@ -178,9 +189,9 @@ def main(width: int, embed_size: int, vectors_model,
print("Load data")
texts = load_texts(limit=0)
print("Train tensorizer")
optimizer = train_tensorizer(nlp, texts, dropout=0.5, n_iter=pretrain_iters)
optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters)
print("Train textcat")
train_textcat(nlp, optimizer, train_examples, n_iter=train_iters)
train_textcat(nlp, train_examples, n_iter=train_iters)
if __name__ == '__main__':
plac.call(main)