diff --git a/spacy/sense_tagger.pyx b/spacy/sense_tagger.pyx index 8147b5ad3..be44f0e0e 100644 --- a/spacy/sense_tagger.pyx +++ b/spacy/sense_tagger.pyx @@ -255,10 +255,10 @@ cdef class SenseTagger: self.pos_senses[parts_of_speech.ADJ] = all_senses self.pos_senses[parts_of_speech.ADV] = all_senses self.pos_senses[parts_of_speech.ADP] = all_senses - self.pos_senses[parts_of_speech.CONJ] = all_senses - self.pos_senses[parts_of_speech.DET] = all_senses - self.pos_senses[parts_of_speech.NUM] = all_senses - self.pos_senses[parts_of_speech.PRON] = all_senses + self.pos_senses[parts_of_speech.CONJ] = 0 + self.pos_senses[parts_of_speech.DET] = 0 + self.pos_senses[parts_of_speech.NUM] = 0 + self.pos_senses[parts_of_speech.PRON] = 0 self.pos_senses[parts_of_speech.PRT] = all_senses self.pos_senses[parts_of_speech.X] = all_senses self.pos_senses[parts_of_speech.PUNCT] = 0 @@ -286,9 +286,11 @@ cdef class SenseTagger: local_feats = self.extractor.get_feats(local_context, &n_feats) features.extend(local_feats, n_feats) scores = self.model.get_scores(features.c, features.length) - self.weight_scores_by_tagdict(scores, token, 0.95) + self.weight_scores_by_tagdict(scores, token, 0.9) tokens.data[i].sense = self.best_in_set(scores, valid_senses) features.clear() + else: + token.sense = NO_SENSE def train(self, Tokens tokens): cdef int i, j @@ -303,26 +305,32 @@ cdef class SenseTagger: token = &tokens.data[i] pos_senses = self.pos_senses[token.pos] lex_senses = token.lex.senses & pos_senses - if pos_senses >= 2 and lex_senses >= 2: + if lex_senses >= 2: fill_context(context, token) feats = self.extractor.get_feats(context, &n_feats) scores = self.model.get_scores(feats, n_feats) - #self.weight_scores_by_tagdict(scores, token, 0.1) guess = self.best_in_set(scores, pos_senses) best = self.best_in_set(scores, lex_senses) - guess_counts = {} - gold_counts = {} - if guess != best: - cost += 1 - for j in range(n_feats): - f_key = feats[j].key - f_i = feats[j].i - feat = (f_i, f_key) - gold_counts[feat] = gold_counts.get(feat, 0) + 1.0 - guess_counts[feat] = guess_counts.get(feat, 0) - 1.0 - self.model.update({guess: guess_counts, best: gold_counts}) + update = self._make_update(feats, n_feats, guess, best) + self.model.update(update) + token.sense = best + cost += guess != best + else: + token.sense = 1 return cost + cdef dict _make_update(self, const Feature* feats, int n_feats, int guess, int best): + guess_counts = {} + gold_counts = {} + if guess != best: + for j in range(n_feats): + f_key = feats[j].key + f_i = feats[j].i + feat = (f_i, f_key) + gold_counts[feat] = gold_counts.get(feat, 0) + 1.0 + guess_counts[feat] = guess_counts.get(feat, 0) - 1.0 + return {guess: guess_counts, best: gold_counts} + cdef int best_in_set(self, const weight_t* scores, flags_t senses) except -1: cdef weight_t max_ = 0 cdef int argmax = -1