Refactor some of tok2vec

This commit is contained in:
Matthw Honnibal 2019-10-17 17:58:00 +02:00
parent e63f28079a
commit 3f26c50a4d

View File

@ -18,6 +18,8 @@ from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural.optimizers import Adam
from thinc.t2t import prepare_self_attention, MultiHeadedAttention
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
@ -315,16 +317,81 @@ def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
return with_square_sequences(PyTorchWrapperRNN(model))
def Tok2Vec_chars_cnn(width, embed_size, **kwargs):
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
conv_depth = kwargs.get("conv_depth", 4)
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
embed = (
CharacterEmbed(nM=64, nC=8)
>> with_flatten(LN(Maxout(width, 64*8, pieces=cnn_maxout_pieces))))
tok2vec = embed >> with_flatten(CNN(width, conv_depth, 3))
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def Tok2Vec_chars_selfattention(width, embed_size, **kwargs):
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
sa_depth = kwargs.get("self_attn_depth", 4)
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
):
embed = (
CharacterEmbed(nM=64, nC=8)
>> with_flatten(LN(Maxout(width, 64*8, pieces=cnn_maxout_pieces))))
tok2vec = (
embed
>> PositionEncode(10000, width)
>> SelfAttention(width, sa_depth, 4)
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def CNN(width, depth, pieces):
layer = chain(
ExtractWindow(nW=1),
LN(Maxout(width, width * 3, pieces=pieces)))
return clone(Residual(layer), depth)
def SelfAttention(width, depth, pieces):
layer = chain(
prepare_self_attention(Affine(width * 3, width), nM=width, nH=pieces),
MultiHeadedAttention(),
with_flatten(Maxout(width, width)))
return clone(Residual(layer) >> with_flatten(LN(nO=width)), depth)
def PositionEncode(L, D):
positions = NumpyOps().position_encode(L, D)
positions = Model.ops.asarray(positions)
def position_encode_forward(Xs, drop=0.):
output = []
for x in Xs:
output.append(x + positions[:x.shape[0]])
def position_encode_backward(dYs, sgd=None):
return dYs
return output, position_encode_backward
return layerize(position_encode_forward)
def Tok2Vec(width, embed_size, **kwargs):
pretrained_vectors = kwargs.get("pretrained_vectors", None)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True)
char_embed = kwargs.get("char_embed", False)
if char_embed:
subword_features = False
conv_depth = kwargs.get("conv_depth", 4)
bilstm_depth = kwargs.get("bilstm_depth", 0)
self_attn_depth = kwargs.get("self_attn_depth", 0)
if char_embed and self_attn_depth:
return Tok2Vec_chars_selfattention(width, embed_size, **kwargs)
elif char_embed and conv_depth:
return Tok2Vec_chars_cnn(width, embed_size, **kwargs)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators(
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
@ -362,14 +429,6 @@ def Tok2Vec(width, embed_size, **kwargs):
>> LN(Maxout(width, width * 4, pieces=3)),
column=cols.index(ORTH),
)
elif char_embed:
embed = concatenate_lists(
CharacterEmbed(nM=64, nC=8),
FeatureExtracter(cols) >> with_flatten(norm),
)
reduce_dimensions = LN(
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
)
else:
embed = norm
@ -377,14 +436,13 @@ def Tok2Vec(width, embed_size, **kwargs):
ExtractWindow(nW=1)
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
)
if char_embed:
tok2vec = embed >> with_flatten(
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
)
else:
tok2vec = FeatureExtracter(cols) >> with_flatten(
embed >> convolution ** conv_depth, pad=conv_depth
tok2vec = (
FeatureExtracter(cols)
>> with_flatten(
embed
>> CNN(width, conv_depth, cnn_maxout_pieces)
)
)
if bilstm_depth >= 1:
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
@ -566,6 +624,7 @@ def build_tagger_model(nr_class, **cfg):
token_vector_width = util.env_opt("token_vector_width", 96)
pretrained_vectors = cfg.get("pretrained_vectors")
subword_features = cfg.get("subword_features", True)
conv_depth = cfg.get("conv_depth", util.env_opt("conv_depth", 4))
with Model.define_operators({">>": chain, "+": add}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
@ -575,6 +634,7 @@ def build_tagger_model(nr_class, **cfg):
embed_size,
subword_features=subword_features,
pretrained_vectors=pretrained_vectors,
conv_depth=conv_depth
)
softmax = with_flatten(Softmax(nr_class, token_vector_width))
model = tok2vec >> softmax
@ -591,7 +651,7 @@ def build_morphologizer_model(class_nums, **cfg):
else:
token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors")
char_embed = cfg.get("char_embed", True)
char_embed = cfg.get("char_embed", False)
with Model.define_operators({">>": chain, "+": add, "**": clone}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]