mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Make parser hidden shape consistent even if maxout==1
This commit is contained in:
parent
b101736555
commit
3faf9189a2
19
spacy/_ml.py
19
spacy/_ml.py
|
@ -110,17 +110,19 @@ def _preprocess_doc(docs, drop=0.):
|
|||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nO=Dimension("Output size"),
|
||||
nP=Dimension("Maxout pieces"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nF, obj.nO, obj.nI)),
|
||||
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO,)),
|
||||
lambda obj: (obj.nO, obj.nP)),
|
||||
d_W=Gradient("W"),
|
||||
d_b=Gradient("b")
|
||||
)
|
||||
class PrecomputableAffine(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
||||
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nP = nP
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
|
@ -128,16 +130,16 @@ class PrecomputableAffine(Model):
|
|||
tensordot = self.ops.xp.tensordot
|
||||
ascontiguous = self.ops.xp.ascontiguousarray
|
||||
|
||||
Yf = tensordot(X, self.W, axes=[[1], [2]])
|
||||
Yf = tensordot(X, self.W, axes=[[1], [3]])
|
||||
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
Xf = X[ids]
|
||||
|
||||
dXf = tensordot(dY, self.W, axes=[[1], [1]])
|
||||
dXf = tensordot(dY, self.W, axes=[[1,2], [1,2]])
|
||||
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
||||
|
||||
self.d_W += dW.transpose((1, 0, 2))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
self.d_W += dW.transpose((2, 0, 1, 3))
|
||||
self.d_b += dY.sum(axis=0)
|
||||
|
||||
if sgd is not None:
|
||||
|
@ -167,11 +169,10 @@ class PrecomputableAffine(Model):
|
|||
|
||||
def predict(ids, tokvecs):
|
||||
hiddens = model(tokvecs)
|
||||
vector = model.ops.allocate((hiddens.shape[0], model.nO))
|
||||
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
|
||||
model.ops.scatter_add(vector, ids, hiddens)
|
||||
vector += model.b
|
||||
if model.nP >= 2:
|
||||
vector = vector.reshape((ids.shape[0], model.nO//model.nP, model.nP))
|
||||
return model.ops.maxout(vector)[0]
|
||||
else:
|
||||
return vector * (vector >= 0)
|
||||
|
|
Loading…
Reference in New Issue
Block a user