mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-05 12:23:06 +03:00
Make parser hidden shape consistent even if maxout==1
This commit is contained in:
parent
b101736555
commit
3faf9189a2
19
spacy/_ml.py
19
spacy/_ml.py
|
@ -110,17 +110,19 @@ def _preprocess_doc(docs, drop=0.):
|
||||||
nI=Dimension("Input size"),
|
nI=Dimension("Input size"),
|
||||||
nF=Dimension("Number of features"),
|
nF=Dimension("Number of features"),
|
||||||
nO=Dimension("Output size"),
|
nO=Dimension("Output size"),
|
||||||
|
nP=Dimension("Maxout pieces"),
|
||||||
W=Synapses("Weights matrix",
|
W=Synapses("Weights matrix",
|
||||||
lambda obj: (obj.nF, obj.nO, obj.nI)),
|
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
||||||
b=Biases("Bias vector",
|
b=Biases("Bias vector",
|
||||||
lambda obj: (obj.nO,)),
|
lambda obj: (obj.nO, obj.nP)),
|
||||||
d_W=Gradient("W"),
|
d_W=Gradient("W"),
|
||||||
d_b=Gradient("b")
|
d_b=Gradient("b")
|
||||||
)
|
)
|
||||||
class PrecomputableAffine(Model):
|
class PrecomputableAffine(Model):
|
||||||
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
|
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
||||||
Model.__init__(self, **kwargs)
|
Model.__init__(self, **kwargs)
|
||||||
self.nO = nO
|
self.nO = nO
|
||||||
|
self.nP = nP
|
||||||
self.nI = nI
|
self.nI = nI
|
||||||
self.nF = nF
|
self.nF = nF
|
||||||
|
|
||||||
|
@ -128,16 +130,16 @@ class PrecomputableAffine(Model):
|
||||||
tensordot = self.ops.xp.tensordot
|
tensordot = self.ops.xp.tensordot
|
||||||
ascontiguous = self.ops.xp.ascontiguousarray
|
ascontiguous = self.ops.xp.ascontiguousarray
|
||||||
|
|
||||||
Yf = tensordot(X, self.W, axes=[[1], [2]])
|
Yf = tensordot(X, self.W, axes=[[1], [3]])
|
||||||
|
|
||||||
def backward(dY_ids, sgd=None):
|
def backward(dY_ids, sgd=None):
|
||||||
dY, ids = dY_ids
|
dY, ids = dY_ids
|
||||||
Xf = X[ids]
|
Xf = X[ids]
|
||||||
|
|
||||||
dXf = tensordot(dY, self.W, axes=[[1], [1]])
|
dXf = tensordot(dY, self.W, axes=[[1,2], [1,2]])
|
||||||
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
||||||
|
# (o, p, f, i) --> (f, o, p, i)
|
||||||
self.d_W += dW.transpose((1, 0, 2))
|
self.d_W += dW.transpose((2, 0, 1, 3))
|
||||||
self.d_b += dY.sum(axis=0)
|
self.d_b += dY.sum(axis=0)
|
||||||
|
|
||||||
if sgd is not None:
|
if sgd is not None:
|
||||||
|
@ -167,11 +169,10 @@ class PrecomputableAffine(Model):
|
||||||
|
|
||||||
def predict(ids, tokvecs):
|
def predict(ids, tokvecs):
|
||||||
hiddens = model(tokvecs)
|
hiddens = model(tokvecs)
|
||||||
vector = model.ops.allocate((hiddens.shape[0], model.nO))
|
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
|
||||||
model.ops.scatter_add(vector, ids, hiddens)
|
model.ops.scatter_add(vector, ids, hiddens)
|
||||||
vector += model.b
|
vector += model.b
|
||||||
if model.nP >= 2:
|
if model.nP >= 2:
|
||||||
vector = vector.reshape((ids.shape[0], model.nO//model.nP, model.nP))
|
|
||||||
return model.ops.maxout(vector)[0]
|
return model.ops.maxout(vector)[0]
|
||||||
else:
|
else:
|
||||||
return vector * (vector >= 0)
|
return vector * (vector >= 0)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user