From 3fd19b8bd8c8813dab2cbe627a422ac189d5f199 Mon Sep 17 00:00:00 2001 From: shademe Date: Fri, 18 Nov 2022 14:50:39 +0100 Subject: [PATCH] Replace config string with `spacy.blank` --- spacy/tests/training/test_training.py | 39 +++------------------------ 1 file changed, 4 insertions(+), 35 deletions(-) diff --git a/spacy/tests/training/test_training.py b/spacy/tests/training/test_training.py index 37808db5b..6d47cb606 100644 --- a/spacy/tests/training/test_training.py +++ b/spacy/tests/training/test_training.py @@ -3,6 +3,7 @@ from confection import Config import numpy import pytest +import spacy import srsly from spacy.lang.en import English from spacy.tokens import Doc, DocBin @@ -14,7 +15,7 @@ from spacy.training.align import get_alignments from spacy.training.converters import json_to_docs from spacy.training.loop import train_while_improving from spacy.util import get_words_and_spaces, load_model_from_path, minibatch -from spacy.util import load_config_from_str, load_model_from_config +from spacy.util import load_config_from_str from thinc.api import compounding, Adam from ..util import make_tempdir @@ -1116,38 +1117,6 @@ def test_retokenized_docs(doc): assert example.get_aligned("ORTH", as_string=True) == expected2 -training_config_string = """ -[nlp] -lang = "en" -pipeline = ["tok2vec", "tagger"] - -[components] - -[components.tok2vec] -factory = "tok2vec" - -[components.tok2vec.model] -@architectures = "spacy.HashEmbedCNN.v1" -pretrained_vectors = null -width = 342 -depth = 4 -window_size = 1 -embed_size = 2000 -maxout_pieces = 3 -subword_features = true - -[components.tagger] -factory = "tagger" - -[components.tagger.model] -@architectures = "spacy.Tagger.v2" - -[components.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.width} -""" - - def test_training_before_update(doc): def before_update(nlp, args): assert args["step"] == 0 @@ -1161,8 +1130,8 @@ def test_training_before_update(doc): def generate_batch(): yield 1, [Example(doc, doc)] - config = Config().from_str(training_config_string, interpolate=False) - nlp = load_model_from_config(config, auto_fill=True, validate=True) + nlp = spacy.blank("en", config={"training": {}}) + nlp.add_pipe("tagger") optimizer = Adam() generator = train_while_improving( nlp,