mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-28 02:46:35 +03:00
Add store_activations
to docstrings.
This commit is contained in:
parent
5eeb2e8f90
commit
403b1f1312
|
@ -109,6 +109,8 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
frequency in the training data.
|
||||
overwrite (bool): overwrite existing lemma annotations.
|
||||
top_k (int): try to apply at most the k most probable edit trees.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
|
|
@ -98,6 +98,8 @@ def make_entity_linker(
|
|||
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
|
||||
produces a list of candidates, given a certain knowledge base and a textual mention.
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "ents" and "scores".
|
||||
"""
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
|
|
|
@ -114,6 +114,8 @@ class Morphologizer(Tagger):
|
|||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attributes "pos" and "morph" and
|
||||
Scorer.score_token_attr_per_feat for the attribute "morph".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
|
||||
DOCS: https://spacy.io/api/morphologizer#init
|
||||
"""
|
||||
|
|
|
@ -92,6 +92,8 @@ class SentenceRecognizer(Tagger):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the attribute "sents".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#init
|
||||
"""
|
||||
|
|
|
@ -141,6 +141,8 @@ def make_spancat(
|
|||
0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||
per span. Defaults to None, indicating no limit.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "indices" and "scores".
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
|
|
|
@ -107,6 +107,8 @@ class Tagger(TrainablePipe):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attribute "tag".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#init
|
||||
"""
|
||||
|
|
|
@ -107,6 +107,8 @@ def make_textcat(
|
|||
scores for each category.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations is: "probs".
|
||||
"""
|
||||
return TextCategorizer(
|
||||
nlp.vocab,
|
||||
|
|
|
@ -155,6 +155,8 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations is: "probs".
|
||||
|
||||
DOCS: https://spacy.io/api/textcategorizer#init
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user