mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
Add store_activations
to docstrings.
This commit is contained in:
parent
5eeb2e8f90
commit
403b1f1312
|
@ -109,6 +109,8 @@ class EditTreeLemmatizer(TrainablePipe):
|
||||||
frequency in the training data.
|
frequency in the training data.
|
||||||
overwrite (bool): overwrite existing lemma annotations.
|
overwrite (bool): overwrite existing lemma annotations.
|
||||||
top_k (int): try to apply at most the k most probable edit trees.
|
top_k (int): try to apply at most the k most probable edit trees.
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||||
"""
|
"""
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
|
@ -98,6 +98,8 @@ def make_entity_linker(
|
||||||
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
|
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
|
||||||
produces a list of candidates, given a certain knowledge base and a textual mention.
|
produces a list of candidates, given a certain knowledge base and a textual mention.
|
||||||
scorer (Optional[Callable]): The scoring method.
|
scorer (Optional[Callable]): The scoring method.
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "ents" and "scores".
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not model.attrs.get("include_span_maker", False):
|
if not model.attrs.get("include_span_maker", False):
|
||||||
|
|
|
@ -114,6 +114,8 @@ class Morphologizer(Tagger):
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
Scorer.score_token_attr for the attributes "pos" and "morph" and
|
Scorer.score_token_attr for the attributes "pos" and "morph" and
|
||||||
Scorer.score_token_attr_per_feat for the attribute "morph".
|
Scorer.score_token_attr_per_feat for the attribute "morph".
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/morphologizer#init
|
DOCS: https://spacy.io/api/morphologizer#init
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -92,6 +92,8 @@ class SentenceRecognizer(Tagger):
|
||||||
losses during training.
|
losses during training.
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
Scorer.score_spans for the attribute "sents".
|
Scorer.score_spans for the attribute "sents".
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/sentencerecognizer#init
|
DOCS: https://spacy.io/api/sentencerecognizer#init
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -141,6 +141,8 @@ def make_spancat(
|
||||||
0.5.
|
0.5.
|
||||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||||
per span. Defaults to None, indicating no limit.
|
per span. Defaults to None, indicating no limit.
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "indices" and "scores".
|
||||||
"""
|
"""
|
||||||
return SpanCategorizer(
|
return SpanCategorizer(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
|
|
|
@ -107,6 +107,8 @@ class Tagger(TrainablePipe):
|
||||||
losses during training.
|
losses during training.
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
Scorer.score_token_attr for the attribute "tag".
|
Scorer.score_token_attr for the attribute "tag".
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/tagger#init
|
DOCS: https://spacy.io/api/tagger#init
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -107,6 +107,8 @@ def make_textcat(
|
||||||
scores for each category.
|
scores for each category.
|
||||||
threshold (float): Cutoff to consider a prediction "positive".
|
threshold (float): Cutoff to consider a prediction "positive".
|
||||||
scorer (Optional[Callable]): The scoring method.
|
scorer (Optional[Callable]): The scoring method.
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations is: "probs".
|
||||||
"""
|
"""
|
||||||
return TextCategorizer(
|
return TextCategorizer(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
|
|
|
@ -155,6 +155,8 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
||||||
name (str): The component instance name, used to add entries to the
|
name (str): The component instance name, used to add entries to the
|
||||||
losses during training.
|
losses during training.
|
||||||
threshold (float): Cutoff to consider a prediction "positive".
|
threshold (float): Cutoff to consider a prediction "positive".
|
||||||
|
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||||
|
Doc when annotating. supported activations is: "probs".
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/textcategorizer#init
|
DOCS: https://spacy.io/api/textcategorizer#init
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue
Block a user