mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Add store_activations to docstrings.
				
					
				
			This commit is contained in:
		
							parent
							
								
									5eeb2e8f90
								
							
						
					
					
						commit
						403b1f1312
					
				|  | @ -109,6 +109,8 @@ class EditTreeLemmatizer(TrainablePipe): | ||||||
|             frequency in the training data. |             frequency in the training data. | ||||||
|         overwrite (bool): overwrite existing lemma annotations. |         overwrite (bool): overwrite existing lemma annotations. | ||||||
|         top_k (int): try to apply at most the k most probable edit trees. |         top_k (int): try to apply at most the k most probable edit trees. | ||||||
|  |         store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |             Doc when annotating. supported activations are: "probs" and "guesses". | ||||||
|         """ |         """ | ||||||
|         self.vocab = vocab |         self.vocab = vocab | ||||||
|         self.model = model |         self.model = model | ||||||
|  |  | ||||||
|  | @ -98,6 +98,8 @@ def make_entity_linker( | ||||||
|     get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that |     get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that | ||||||
|         produces a list of candidates, given a certain knowledge base and a textual mention. |         produces a list of candidates, given a certain knowledge base and a textual mention. | ||||||
|     scorer (Optional[Callable]): The scoring method. |     scorer (Optional[Callable]): The scoring method. | ||||||
|  |     store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |         Doc when annotating. supported activations are: "ents" and "scores". | ||||||
|     """ |     """ | ||||||
| 
 | 
 | ||||||
|     if not model.attrs.get("include_span_maker", False): |     if not model.attrs.get("include_span_maker", False): | ||||||
|  |  | ||||||
|  | @ -114,6 +114,8 @@ class Morphologizer(Tagger): | ||||||
|         scorer (Optional[Callable]): The scoring method. Defaults to |         scorer (Optional[Callable]): The scoring method. Defaults to | ||||||
|             Scorer.score_token_attr for the attributes "pos" and "morph" and |             Scorer.score_token_attr for the attributes "pos" and "morph" and | ||||||
|             Scorer.score_token_attr_per_feat for the attribute "morph". |             Scorer.score_token_attr_per_feat for the attribute "morph". | ||||||
|  |         store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |             Doc when annotating. supported activations are: "probs" and "guesses". | ||||||
| 
 | 
 | ||||||
|         DOCS: https://spacy.io/api/morphologizer#init |         DOCS: https://spacy.io/api/morphologizer#init | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
|  | @ -92,6 +92,8 @@ class SentenceRecognizer(Tagger): | ||||||
|             losses during training. |             losses during training. | ||||||
|         scorer (Optional[Callable]): The scoring method. Defaults to |         scorer (Optional[Callable]): The scoring method. Defaults to | ||||||
|             Scorer.score_spans for the attribute "sents". |             Scorer.score_spans for the attribute "sents". | ||||||
|  |         store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |             Doc when annotating. supported activations are: "probs" and "guesses". | ||||||
| 
 | 
 | ||||||
|         DOCS: https://spacy.io/api/sentencerecognizer#init |         DOCS: https://spacy.io/api/sentencerecognizer#init | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
|  | @ -141,6 +141,8 @@ def make_spancat( | ||||||
|         0.5. |         0.5. | ||||||
|     max_positive (Optional[int]): Maximum number of labels to consider positive |     max_positive (Optional[int]): Maximum number of labels to consider positive | ||||||
|         per span. Defaults to None, indicating no limit. |         per span. Defaults to None, indicating no limit. | ||||||
|  |     store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |         Doc when annotating. supported activations are: "indices" and "scores". | ||||||
|     """ |     """ | ||||||
|     return SpanCategorizer( |     return SpanCategorizer( | ||||||
|         nlp.vocab, |         nlp.vocab, | ||||||
|  |  | ||||||
|  | @ -107,6 +107,8 @@ class Tagger(TrainablePipe): | ||||||
|             losses during training. |             losses during training. | ||||||
|         scorer (Optional[Callable]): The scoring method. Defaults to |         scorer (Optional[Callable]): The scoring method. Defaults to | ||||||
|             Scorer.score_token_attr for the attribute "tag". |             Scorer.score_token_attr for the attribute "tag". | ||||||
|  |         store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |             Doc when annotating. supported activations are: "probs" and "guesses". | ||||||
| 
 | 
 | ||||||
|         DOCS: https://spacy.io/api/tagger#init |         DOCS: https://spacy.io/api/tagger#init | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
|  | @ -107,6 +107,8 @@ def make_textcat( | ||||||
|         scores for each category. |         scores for each category. | ||||||
|     threshold (float): Cutoff to consider a prediction "positive". |     threshold (float): Cutoff to consider a prediction "positive". | ||||||
|     scorer (Optional[Callable]): The scoring method. |     scorer (Optional[Callable]): The scoring method. | ||||||
|  |     store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |         Doc when annotating. supported activations is: "probs". | ||||||
|     """ |     """ | ||||||
|     return TextCategorizer( |     return TextCategorizer( | ||||||
|         nlp.vocab, |         nlp.vocab, | ||||||
|  |  | ||||||
|  | @ -155,6 +155,8 @@ class MultiLabel_TextCategorizer(TextCategorizer): | ||||||
|         name (str): The component instance name, used to add entries to the |         name (str): The component instance name, used to add entries to the | ||||||
|             losses during training. |             losses during training. | ||||||
|         threshold (float): Cutoff to consider a prediction "positive". |         threshold (float): Cutoff to consider a prediction "positive". | ||||||
|  |         store_activations (Union[bool, List[str]]): Model activations to store in | ||||||
|  |             Doc when annotating. supported activations is: "probs". | ||||||
| 
 | 
 | ||||||
|         DOCS: https://spacy.io/api/textcategorizer#init |         DOCS: https://spacy.io/api/textcategorizer#init | ||||||
|         """ |         """ | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user