Merge remote-tracking branch 'upstream/master' into chore/update-develop-from-master-v3.7-1

This commit is contained in:
Adriane Boyd 2023-09-28 15:09:06 +02:00
commit 406794a081
43 changed files with 2561 additions and 218 deletions

View File

@ -6,23 +6,20 @@ spaCy is a library for **advanced Natural Language Processing** in Python and
Cython. It's built on the very latest research, and was designed from day one to
be used in real products.
spaCy comes with
[pretrained pipelines](https://spacy.io/models) and
currently supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging,
parsing, **named entity recognition**, **text classification** and more,
multi-task learning with pretrained **transformers** like BERT, as well as a
spaCy comes with [pretrained pipelines](https://spacy.io/models) and currently
supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging, parsing,
**named entity recognition**, **text classification** and more, multi-task
learning with pretrained **transformers** like BERT, as well as a
production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
open-source software, released under the
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
💥 **We'd love to hear more about your experience with spaCy!**
[Fill out our survey here.](https://form.typeform.com/to/aMel9q9f)
💫 **Version 3.5 out now!**
💫 **Version 3.6 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
[![Current Release Version](https://img.shields.io/github/release/explosion/spacy.svg?style=flat-square&logo=github)](https://github.com/explosion/spaCy/releases)
[![pypi Version](https://img.shields.io/pypi/v/spacy.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/spacy/)
[![conda Version](https://img.shields.io/conda/vn/conda-forge/spacy.svg?style=flat-square&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/spacy)
@ -36,7 +33,7 @@ open-source software, released under the [MIT license](https://github.com/explos
## 📖 Documentation
| Documentation | |
| ----------------------------- | ---------------------------------------------------------------------- |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
@ -58,7 +55,7 @@ open-source software, released under the [MIT license](https://github.com/explos
[api reference]: https://spacy.io/api/
[models]: https://spacy.io/models
[universe]: https://spacy.io/universe
[spaCy VS Code Extension]: https://github.com/explosion/spacy-vscode
[spacy vs code extension]: https://github.com/explosion/spacy-vscode
[videos]: https://www.youtube.com/c/ExplosionAI
[online course]: https://course.spacy.io
[project templates]: https://github.com/explosion/projects
@ -92,7 +89,9 @@ more people can benefit from it.
- State-of-the-art speed
- Production-ready **training system**
- Linguistically-motivated **tokenization**
- Components for named **entity recognition**, part-of-speech-tagging, dependency parsing, sentence segmentation, **text classification**, lemmatization, morphological analysis, entity linking and more
- Components for named **entity recognition**, part-of-speech-tagging,
dependency parsing, sentence segmentation, **text classification**,
lemmatization, morphological analysis, entity linking and more
- Easily extensible with **custom components** and attributes
- Support for custom models in **PyTorch**, **TensorFlow** and other frameworks
- Built in **visualizers** for syntax and NER
@ -118,8 +117,8 @@ For detailed installation instructions, see the
### pip
Using pip, spaCy releases are available as source packages and binary wheels.
Before you install spaCy and its dependencies, make sure that
your `pip`, `setuptools` and `wheel` are up to date.
Before you install spaCy and its dependencies, make sure that your `pip`,
`setuptools` and `wheel` are up to date.
```bash
pip install -U pip setuptools wheel
@ -174,9 +173,9 @@ with the new version.
## 📦 Download model packages
Trained pipelines for spaCy can be installed as **Python packages**. This
means that they're a component of your application, just like any other module.
Models can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
Trained pipelines for spaCy can be installed as **Python packages**. This means
that they're a component of your application, just like any other module. Models
can be installed using spaCy's [`download`](https://spacy.io/api/cli#download)
command, or manually by pointing pip to a path or URL.
| Documentation | |
@ -242,8 +241,7 @@ do that depends on your system.
| **Mac** | Install a recent version of [XCode](https://developer.apple.com/xcode/), including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled. |
| **Windows** | Install a version of the [Visual C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) or [Visual Studio Express](https://visualstudio.microsoft.com/vs/express/) that matches the version that was used to compile your Python interpreter. |
For more details
and instructions, see the documentation on
For more details and instructions, see the documentation on
[compiling spaCy from source](https://spacy.io/usage#source) and the
[quickstart widget](https://spacy.io/usage#section-quickstart) to get the right
commands for your platform and Python version.

View File

@ -18,7 +18,7 @@ numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
jinja2
langcodes>=3.2.0,<4.0.0
# Official Python utilities

View File

@ -62,7 +62,7 @@ install_requires =
numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
jinja2
# Official Python utilities
setuptools
@ -113,6 +113,8 @@ cuda117 =
cupy-cuda117>=5.0.0b4,<13.0.0
cuda11x =
cupy-cuda11x>=11.0.0,<13.0.0
cuda12x =
cupy-cuda12x>=11.5.0,<13.0.0
cuda-autodetect =
cupy-wheel>=11.0.0,<13.0.0
apple =

View File

@ -1,10 +1,9 @@
#!/usr/bin/env python
from setuptools import Extension, setup, find_packages
import sys
import platform
import numpy
from distutils.command.build_ext import build_ext
from distutils.sysconfig import get_python_inc
from setuptools.command.build_ext import build_ext
from sysconfig import get_path
from pathlib import Path
import shutil
from Cython.Build import cythonize
@ -88,30 +87,6 @@ COPY_FILES = {
}
def is_new_osx():
"""Check whether we're on OSX >= 10.7"""
if sys.platform != "darwin":
return False
mac_ver = platform.mac_ver()[0]
if mac_ver.startswith("10"):
minor_version = int(mac_ver.split(".")[1])
if minor_version >= 7:
return True
else:
return False
return False
if is_new_osx():
# On Mac, use libc++ because Apple deprecated use of
# libstdc
COMPILE_OPTIONS["other"].append("-stdlib=libc++")
LINK_OPTIONS["other"].append("-lc++")
# g++ (used by unix compiler on mac) links to libstdc++ as a default lib.
# See: https://stackoverflow.com/questions/1653047/avoid-linking-to-libstdc
LINK_OPTIONS["other"].append("-nodefaultlibs")
# By subclassing build_extensions we have the actual compiler that will be used which is really known only after finalize_options
# http://stackoverflow.com/questions/724664/python-distutils-how-to-get-a-compiler-that-is-going-to-be-used
class build_ext_options:
@ -204,7 +179,7 @@ def setup_package():
include_dirs = [
numpy.get_include(),
get_python_inc(plat_specific=True),
get_path("include"),
]
ext_modules = []
ext_modules.append(

View File

@ -13,7 +13,6 @@ from thinc.api import Config, prefer_gpu, require_cpu, require_gpu # noqa: F401
from . import pipeline # noqa: F401
from . import util
from .about import __version__ # noqa: F401
from .cli.info import info # noqa: F401
from .errors import Errors
from .glossary import explain # noqa: F401
from .language import Language
@ -77,3 +76,9 @@ def blank(
# We should accept both dot notation and nested dict here for consistency
config = util.dot_to_dict(config)
return LangClass.from_config(config, vocab=vocab, meta=meta)
def info(*args, **kwargs):
from .cli.info import info as cli_info
return cli_info(*args, **kwargs)

View File

@ -14,6 +14,7 @@ from .debug_diff import debug_diff # noqa: F401
from .debug_model import debug_model # noqa: F401
from .download import download # noqa: F401
from .evaluate import evaluate # noqa: F401
from .find_function import find_function # noqa: F401
from .find_threshold import find_threshold # noqa: F401
from .info import info # noqa: F401
from .init_config import fill_config, init_config # noqa: F401

View File

@ -40,7 +40,8 @@ def assemble_cli(
DOCS: https://spacy.io/api/cli#assemble
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
# Make sure all files and paths exists if they are needed
if not config_path or (str(config_path) != "-" and not config_path.exists()):
msg.fail("Config file not found", config_path, exits=1)

View File

@ -28,6 +28,7 @@ def evaluate_cli(
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"),
# fmt: on
):
"""
@ -53,6 +54,7 @@ def evaluate_cli(
displacy_limit=displacy_limit,
per_component=per_component,
silent=False,
spans_key=spans_key,
)

View File

@ -0,0 +1,69 @@
from typing import Optional, Tuple
from catalogue import RegistryError
from wasabi import msg
from ..util import registry
from ._util import Arg, Opt, app
@app.command("find-function")
def find_function_cli(
# fmt: off
func_name: str = Arg(..., help="Name of the registered function."),
registry_name: Optional[str] = Opt(None, "--registry", "-r", help="Name of the catalogue registry."),
# fmt: on
):
"""
Find the module, path and line number to the file the registered
function is defined in, if available.
func_name (str): Name of the registered function.
registry_name (Optional[str]): Name of the catalogue registry.
DOCS: https://spacy.io/api/cli#find-function
"""
if not registry_name:
registry_names = registry.get_registry_names()
for name in registry_names:
if registry.has(name, func_name):
registry_name = name
break
if not registry_name:
msg.fail(
f"Couldn't find registered function: '{func_name}'",
exits=1,
)
assert registry_name is not None
find_function(func_name, registry_name)
def find_function(func_name: str, registry_name: str) -> Tuple[str, int]:
registry_desc = None
try:
registry_desc = registry.find(registry_name, func_name)
except RegistryError as e:
msg.fail(
f"Couldn't find registered function: '{func_name}' in registry '{registry_name}'",
)
msg.fail(f"{e}", exits=1)
assert registry_desc is not None
registry_path = None
line_no = None
if registry_desc["file"]:
registry_path = registry_desc["file"]
line_no = registry_desc["line_no"]
if not registry_path or not line_no:
msg.fail(
f"Couldn't find path to registered function: '{func_name}' in registry '{registry_name}'",
exits=1,
)
assert registry_path is not None
assert line_no is not None
msg.good(f"Found registered function '{func_name}' at {registry_path}:{line_no}")
return str(registry_path), int(line_no)

View File

@ -52,8 +52,8 @@ def find_threshold_cli(
DOCS: https://spacy.io/api/cli#find-threshold
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
import_code(code_path)
find_threshold(
model=model,

View File

@ -39,7 +39,8 @@ def init_vectors_cli(
you can use in the [initialize] block of your config to initialize
a model with vectors.
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
msg.info(f"Creating blank nlp object for language '{lang}'")
nlp = util.get_lang_class(lang)()
if jsonl_loc is not None:
@ -87,7 +88,8 @@ def init_pipeline_cli(
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
@ -116,7 +118,8 @@ def init_labels_cli(
"""Generate JSON files for the labels in the data. This helps speed up the
training process, since spaCy won't have to preprocess the data to
extract the labels."""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
if not output_path.exists():
output_path.mkdir(parents=True)
overrides = parse_config_overrides(ctx.args)

View File

@ -403,7 +403,7 @@ def _format_sources(data: Any) -> str:
if author:
result += " ({})".format(author)
sources.append(result)
return "<br />".join(sources)
return "<br>".join(sources)
def _format_accuracy(data: Dict[str, Any], exclude: List[str] = ["speed"]) -> str:

View File

@ -47,7 +47,8 @@ def train_cli(
DOCS: https://spacy.io/api/cli#train
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if verbose:
util.logger.setLevel(logging.DEBUG)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
train(config_path, output_path, use_gpu=use_gpu, overrides=overrides)

View File

@ -313,6 +313,8 @@ class DependencyRenderer:
self.lang = settings.get("lang", DEFAULT_LANG)
render_id = f"{id_prefix}-{i}"
svg = self.render_svg(render_id, p["words"], p["arcs"])
if p.get("title"):
svg = TPL_TITLE.format(title=p.get("title")) + svg
rendered.append(svg)
if page:
content = "".join([TPL_FIGURE.format(content=svg) for svg in rendered])
@ -565,7 +567,7 @@ class EntityRenderer:
for i, fragment in enumerate(fragments):
markup += escape_html(fragment)
if len(fragments) > 1 and i != len(fragments) - 1:
markup += "</br>"
markup += "<br>"
if self.ents is None or label.upper() in self.ents:
color = self.colors.get(label.upper(), self.default_color)
ent_settings = {
@ -583,7 +585,7 @@ class EntityRenderer:
for i, fragment in enumerate(fragments):
markup += escape_html(fragment)
if len(fragments) > 1 and i != len(fragments) - 1:
markup += "</br>"
markup += "<br>"
markup = TPL_ENTS.format(content=markup, dir=self.direction)
if title:
markup = TPL_TITLE.format(title=title) + markup

View File

@ -163,7 +163,7 @@ class SpanishLemmatizer(Lemmatizer):
for old, new in self.lookups.get_table("lemma_rules").get("det", []):
if word == old:
return [new]
# If none of the specfic rules apply, search in the common rules for
# If none of the specific rules apply, search in the common rules for
# determiners and pronouns that follow a unique pattern for
# lemmatization. If the word is in the list, return the corresponding
# lemma.
@ -291,7 +291,7 @@ class SpanishLemmatizer(Lemmatizer):
for old, new in self.lookups.get_table("lemma_rules").get("pron", []):
if word == old:
return [new]
# If none of the specfic rules apply, search in the common rules for
# If none of the specific rules apply, search in the common rules for
# determiners and pronouns that follow a unique pattern for
# lemmatization. If the word is in the list, return the corresponding
# lemma.

View File

@ -15,4 +15,7 @@ sentences = [
"Türkiye'nin başkenti neresi?",
"Bakanlar Kurulu 180 günlük eylem planınııkladı.",
"Merkez Bankası, beklentiler doğrultusunda faizlerde değişikliğe gitmedi.",
"Cemal Sureya kimdir?",
"Bunlari Biliyor muydunuz?",
"Altinoluk Turkiye haritasinin neresinde yer alir?",
]

View File

@ -67,8 +67,8 @@ def build_hash_embed_cnn_tok2vec(
are between 2 and 8.
window_size (int): The number of tokens on either side to concatenate during
the convolutions. The receptive field of the CNN will be
depth * (window_size * 2 + 1), so a 4-layer network with window_size of
2 will be sensitive to 20 words at a time. Recommended value is 1.
depth * window_size * 2 + 1, so a 4-layer network with window_size of
2 will be sensitive to 17 words at a time. Recommended value is 1.
embed_size (int): The number of rows in the hash embedding tables. This can
be surprisingly small, due to the use of the hash embeddings. Recommended
values are between 2000 and 10000.

View File

@ -1,8 +1,12 @@
from collections import defaultdict
from typing import Any, Dict, List, Union
from pydantic import BaseModel, Field, ValidationError
from pydantic.types import StrictBool, StrictInt, StrictStr
try:
from pydantic.v1 import BaseModel, Field, ValidationError
from pydantic.v1.types import StrictBool, StrictInt, StrictStr
except ImportError:
from pydantic import BaseModel, Field, ValidationError # type: ignore
from pydantic.types import StrictBool, StrictInt, StrictStr # type: ignore
class MatchNodeSchema(BaseModel):

View File

@ -16,7 +16,8 @@ from typing import (
Union,
)
from pydantic import (
try:
from pydantic.v1 import (
BaseModel,
ConstrainedStr,
Field,
@ -28,7 +29,21 @@ from pydantic import (
create_model,
validator,
)
from pydantic.main import ModelMetaclass
from pydantic.v1.main import ModelMetaclass
except ImportError:
from pydantic import ( # type: ignore
BaseModel,
ConstrainedStr,
Field,
StrictBool,
StrictFloat,
StrictInt,
StrictStr,
ValidationError,
create_model,
validator,
)
from pydantic.main import ModelMetaclass # type: ignore
from thinc.api import ConfigValidationError, Model, Optimizer
from thinc.config import Promise

View File

@ -1,5 +1,10 @@
import pytest
from pydantic import StrictBool
try:
from pydantic.v1 import StrictBool
except ImportError:
from pydantic import StrictBool # type: ignore
from thinc.api import ConfigValidationError
from spacy.lang.en import English

View File

@ -1,5 +1,10 @@
import pytest
from pydantic import StrictInt, StrictStr
try:
from pydantic.v1 import StrictInt, StrictStr
except ImportError:
from pydantic import StrictInt, StrictStr # type: ignore
from thinc.api import ConfigValidationError, Linear, Model
import spacy

View File

@ -12,6 +12,7 @@ from thinc.api import Config
import spacy
from spacy import about
from spacy import info as spacy_info
from spacy.cli import info
from spacy.cli._util import parse_config_overrides, string_to_list, walk_directory
from spacy.cli.apply import apply
@ -192,6 +193,9 @@ def test_cli_info():
raw_data = info(tmp_dir, exclude=[""])
assert raw_data["lang"] == "nl"
assert raw_data["components"] == ["textcat"]
raw_data = spacy_info(tmp_dir, exclude=[""])
assert raw_data["lang"] == "nl"
assert raw_data["components"] == ["textcat"]
def test_cli_converters_conllu_to_docs():

View File

@ -7,7 +7,7 @@ import srsly
from typer.testing import CliRunner
from spacy.cli._util import app, get_git_version
from spacy.tokens import Doc, DocBin
from spacy.tokens import Doc, DocBin, Span
from .util import make_tempdir, normalize_whitespace
@ -237,3 +237,196 @@ def test_project_push_pull(project_dir):
result = CliRunner().invoke(app, ["project", "pull", remote, str(project_dir)])
assert result.exit_code == 0
assert test_file.is_file()
def test_find_function_valid():
# example of architecture in main code base
function = "spacy.TextCatBOW.v2"
result = CliRunner().invoke(app, ["find-function", function, "-r", "architectures"])
assert f"Found registered function '{function}'" in result.stdout
assert "textcat.py" in result.stdout
result = CliRunner().invoke(app, ["find-function", function])
assert f"Found registered function '{function}'" in result.stdout
assert "textcat.py" in result.stdout
# example of architecture in spacy-legacy
function = "spacy.TextCatBOW.v1"
result = CliRunner().invoke(app, ["find-function", function])
assert f"Found registered function '{function}'" in result.stdout
assert "spacy_legacy" in result.stdout
assert "textcat.py" in result.stdout
def test_find_function_invalid():
# invalid registry
function = "spacy.TextCatBOW.v2"
registry = "foobar"
result = CliRunner().invoke(
app, ["find-function", function, "--registry", registry]
)
assert f"Unknown function registry: '{registry}'" in result.stdout
# invalid function
function = "spacy.TextCatBOW.v666"
result = CliRunner().invoke(app, ["find-function", function])
assert f"Couldn't find registered function: '{function}'" in result.stdout
example_words_1 = ["I", "like", "cats"]
example_words_2 = ["I", "like", "dogs"]
example_lemmas_1 = ["I", "like", "cat"]
example_lemmas_2 = ["I", "like", "dog"]
example_tags = ["PRP", "VBP", "NNS"]
example_morphs = [
"Case=Nom|Number=Sing|Person=1|PronType=Prs",
"Tense=Pres|VerbForm=Fin",
"Number=Plur",
]
example_deps = ["nsubj", "ROOT", "dobj"]
example_pos = ["PRON", "VERB", "NOUN"]
example_ents = ["O", "O", "I-ANIMAL"]
example_spans = [(2, 3, "ANIMAL")]
TRAIN_EXAMPLE_1 = dict(
words=example_words_1,
lemmas=example_lemmas_1,
tags=example_tags,
morphs=example_morphs,
deps=example_deps,
heads=[1, 1, 1],
pos=example_pos,
ents=example_ents,
spans=example_spans,
cats={"CAT": 1.0, "DOG": 0.0},
)
TRAIN_EXAMPLE_2 = dict(
words=example_words_2,
lemmas=example_lemmas_2,
tags=example_tags,
morphs=example_morphs,
deps=example_deps,
heads=[1, 1, 1],
pos=example_pos,
ents=example_ents,
spans=example_spans,
cats={"CAT": 0.0, "DOG": 1.0},
)
@pytest.mark.slow
@pytest.mark.parametrize(
"component,examples",
[
("tagger", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("trainable_lemmatizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("parser", [TRAIN_EXAMPLE_1] * 30),
("ner", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("spancat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("textcat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
],
)
def test_init_config_trainable(component, examples, en_vocab):
if component == "textcat":
train_docs = []
for example in examples:
doc = Doc(en_vocab, words=example["words"])
doc.cats = example["cats"]
train_docs.append(doc)
elif component == "spancat":
train_docs = []
for example in examples:
doc = Doc(en_vocab, words=example["words"])
doc.spans["sc"] = [
Span(doc, start, end, label) for start, end, label in example["spans"]
]
train_docs.append(doc)
else:
train_docs = []
for example in examples:
# cats, spans are not valid kwargs for instantiating a Doc
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
doc = Doc(en_vocab, **example)
train_docs.append(doc)
with make_tempdir() as d_in:
train_bin = DocBin(docs=train_docs)
train_bin.to_disk(d_in / "train.spacy")
dev_bin = DocBin(docs=train_docs)
dev_bin.to_disk(d_in / "dev.spacy")
init_config_result = CliRunner().invoke(
app,
[
"init",
"config",
f"{d_in}/config.cfg",
"--lang",
"en",
"--pipeline",
component,
],
)
assert init_config_result.exit_code == 0
train_result = CliRunner().invoke(
app,
[
"train",
f"{d_in}/config.cfg",
"--paths.train",
f"{d_in}/train.spacy",
"--paths.dev",
f"{d_in}/dev.spacy",
"--output",
f"{d_in}/model",
],
)
assert train_result.exit_code == 0
assert Path(d_in / "model" / "model-last").exists()
@pytest.mark.slow
@pytest.mark.parametrize(
"component,examples",
[("tagger,parser,morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2] * 15)],
)
def test_init_config_trainable_multiple(component, examples, en_vocab):
train_docs = []
for example in examples:
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
doc = Doc(en_vocab, **example)
train_docs.append(doc)
with make_tempdir() as d_in:
train_bin = DocBin(docs=train_docs)
train_bin.to_disk(d_in / "train.spacy")
dev_bin = DocBin(docs=train_docs)
dev_bin.to_disk(d_in / "dev.spacy")
init_config_result = CliRunner().invoke(
app,
[
"init",
"config",
f"{d_in}/config.cfg",
"--lang",
"en",
"--pipeline",
component,
],
)
assert init_config_result.exit_code == 0
train_result = CliRunner().invoke(
app,
[
"train",
f"{d_in}/config.cfg",
"--paths.train",
f"{d_in}/train.spacy",
"--paths.dev",
f"{d_in}/dev.spacy",
"--output",
f"{d_in}/model",
],
)
assert train_result.exit_code == 0
assert Path(d_in / "model" / "model-last").exists()

View File

@ -113,7 +113,7 @@ def test_issue5838():
doc = nlp(sample_text)
doc.ents = [Span(doc, 7, 8, label="test")]
html = displacy.render(doc, style="ent")
found = html.count("</br>")
found = html.count("<br>")
assert found == 4
@ -350,6 +350,78 @@ def test_displacy_render_wrapper(en_vocab):
displacy.set_render_wrapper(lambda html: html)
def test_displacy_render_manual_dep():
"""Test displacy.render with manual data for dep style"""
parsed_dep = {
"words": [
{"text": "This", "tag": "DT"},
{"text": "is", "tag": "VBZ"},
{"text": "a", "tag": "DT"},
{"text": "sentence", "tag": "NN"},
],
"arcs": [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
],
"title": "Title",
}
html = displacy.render([parsed_dep], style="dep", manual=True)
for word in parsed_dep["words"]:
assert word["text"] in html
assert word["tag"] in html
def test_displacy_render_manual_ent():
"""Test displacy.render with manual data for ent style"""
parsed_ents = [
{
"text": "But Google is starting from behind.",
"ents": [{"start": 4, "end": 10, "label": "ORG"}],
},
{
"text": "But Google is starting from behind.",
"ents": [{"start": -100, "end": 100, "label": "COMPANY"}],
"title": "Title",
},
]
html = displacy.render(parsed_ents, style="ent", manual=True)
for parsed_ent in parsed_ents:
assert parsed_ent["ents"][0]["label"] in html
if "title" in parsed_ent:
assert parsed_ent["title"] in html
def test_displacy_render_manual_span():
"""Test displacy.render with manual data for span style"""
parsed_spans = [
{
"text": "Welcome to the Bank of China.",
"spans": [
{"start_token": 3, "end_token": 6, "label": "ORG"},
{"start_token": 5, "end_token": 6, "label": "GPE"},
],
"tokens": ["Welcome", "to", "the", "Bank", "of", "China", "."],
},
{
"text": "Welcome to the Bank of China.",
"spans": [
{"start_token": 3, "end_token": 6, "label": "ORG"},
{"start_token": 5, "end_token": 6, "label": "GPE"},
],
"tokens": ["Welcome", "to", "the", "Bank", "of", "China", "."],
"title": "Title",
},
]
html = displacy.render(parsed_spans, style="span", manual=True)
for parsed_span in parsed_spans:
assert parsed_span["spans"][0]["label"] in html
if "title" in parsed_span:
assert parsed_span["title"] in html
def test_displacy_options_case():
ents = ["foo", "BAR"]
colors = {"FOO": "red", "bar": "green"}

View File

@ -3,7 +3,12 @@ import os
from pathlib import Path
import pytest
from pydantic import ValidationError
try:
from pydantic.v1 import ValidationError
except ImportError:
from pydantic import ValidationError # type: ignore
from thinc.api import (
Config,
ConfigValidationError,

View File

@ -894,7 +894,7 @@ def load_meta(path: Union[str, Path]) -> Dict[str, Any]:
if "spacy_version" in meta:
if not is_compatible_version(about.__version__, meta["spacy_version"]):
lower_version = get_model_lower_version(meta["spacy_version"])
lower_version = get_minor_version(lower_version) # type: ignore[arg-type]
lower_version = get_base_version(lower_version) # type: ignore[arg-type]
if lower_version is not None:
lower_version = "v" + lower_version
elif "spacy_git_version" in meta:

View File

@ -83,7 +83,7 @@ consisting of a CNN and a layer-normalized maxout activation function.
| `width` | The width of the input and output. These are required to be the same, so that residual connections can be used. Recommended values are `96`, `128` or `300`. ~~int~~ |
| `depth` | The number of convolutional layers to use. Recommended values are between `2` and `8`. ~~int~~ |
| `embed_size` | The number of rows in the hash embedding tables. This can be surprisingly small, due to the use of the hash embeddings. Recommended values are between `2000` and `10000`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * (window_size * 2 + 1)`, so a 4-layer network with a window size of `2` will be sensitive to 20 words at a time. Recommended value is `1`. ~~int~~ |
| `window_size` | The number of tokens on either side to concatenate during the convolutions. The receptive field of the CNN will be `depth * window_size * 2 + 1`, so a 4-layer network with a window size of `2` will be sensitive to 17 words at a time. Recommended value is `1`. ~~int~~ |
| `maxout_pieces` | The number of pieces to use in the maxout non-linearity. If `1`, the [`Mish`](https://thinc.ai/docs/api-layers#mish) non-linearity is used instead. Recommended values are `1`-`3`. ~~int~~ |
| `subword_features` | Whether to also embed subword features, specifically the prefix, suffix and word shape. This is recommended for alphabetic languages like English, but not if single-character tokens are used for a language such as Chinese. ~~bool~~ |
| `pretrained_vectors` | Whether to also use static vectors. ~~bool~~ |

View File

@ -7,6 +7,7 @@ menu:
- ['info', 'info']
- ['validate', 'validate']
- ['init', 'init']
- ['find-function', 'find-function']
- ['convert', 'convert']
- ['debug', 'debug']
- ['train', 'train']
@ -274,6 +275,27 @@ $ python -m spacy init labels [config_path] [output_path] [--code] [--verbose] [
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **CREATES** | The label files. |
## find-function {id="find-function",version="3.7",tag="command"}
Find the module, path and line number to the file for a given registered
function. This functionality is helpful to understand where registered
functions, as used in the config file, are defined.
```bash
$ python -m spacy find-function [func_name] [--registry]
```
> #### Example
>
> ```bash
> $ python -m spacy find-function spacy.TextCatBOW.v1
> ```
| Name | Description |
| ------------------ | ----------------------------------------------------- |
| `func_name` | Name of the registered function. ~~str (positional)~~ |
| `--registry`, `-r` | Name of the catalogue registry. ~~str (option)~~ |
## convert {id="convert",tag="command"}
Convert files into spaCy's
@ -1220,7 +1242,7 @@ skew. To render a sample of dependency parses in a HTML file using the
`--displacy-path` argument.
```bash
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] [--per-component] [--spans-key]
```
| Name | Description |
@ -1234,6 +1256,7 @@ $ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--
| `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ |
| `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ |
| `--per-component`, `-P` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ |
| `--spans-key`, `-sk` <Tag variant="new">3.6.2</Tag> | Spans key to use when evaluating `Doc.spans`. Defaults to `sc`. ~~str (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |

File diff suppressed because it is too large Load Diff

View File

@ -67,7 +67,6 @@ architectures and their arguments and hyperparameters.
> ```python
> from spacy.pipeline.spancat import DEFAULT_SPANCAT_SINGLELABEL_MODEL
> config = {
> "threshold": 0.5,
> "spans_key": "labeled_spans",
> "model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
> "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
@ -522,7 +521,7 @@ has two columns, indicating the start and end position.
| Name | Description |
| ----------- | ---------------------------------------------------------------------------- |
| `min_size` | The minimal phrase lengths to suggest (inclusive). ~~[int]~~ |
| `max_size` | The maximal phrase lengths to suggest (exclusive). ~~[int]~~ |
| `max_size` | The maximal phrase lengths to suggest (inclusive). ~~[int]~~ |
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
### spacy.preset_spans_suggester.v1 {id="preset_spans_suggester"}

View File

@ -117,7 +117,7 @@ config. Any existing patterns are removed on initialization.
>
> [initialize.components.span_ruler.patterns]
> @readers = "srsly.read_jsonl.v1"
> path = "corpus/span_ruler_patterns.jsonl
> path = "corpus/span_ruler_patterns.jsonl"
> ```
| Name | Description |

View File

@ -68,7 +68,7 @@ weights, and returns it.
cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
nlp = cls() # 2. Initialize it
for name in pipeline:
nlp.add_pipe(name) # 3. Add the component to the pipeline
nlp.add_pipe(name, config={...}) # 3. Add the component to the pipeline
nlp.from_disk(data_path) # 4. Load in the binary data
```
@ -343,6 +343,130 @@ use with the `manual=True` argument in `displacy.render`.
| `options` | Span-specific visualisation options. ~~Dict[str, Any]~~ |
| **RETURNS** | Generated entities keyed by text (original text) and ents. ~~dict~~ |
### Visualizer data structures {id="displacy_structures"}
You can use displaCy's data format to manually render data. This can be useful
if you want to visualize output from other libraries. You can find examples of
displaCy's different data formats below.
> #### DEP example data structure
>
> ```json
> {
> "words": [
> { "text": "This", "tag": "DT" },
> { "text": "is", "tag": "VBZ" },
> { "text": "a", "tag": "DT" },
> { "text": "sentence", "tag": "NN" }
> ],
> "arcs": [
> { "start": 0, "end": 1, "label": "nsubj", "dir": "left" },
> { "start": 2, "end": 3, "label": "det", "dir": "left" },
> { "start": 1, "end": 3, "label": "attr", "dir": "right" }
> ]
> }
> ```
#### Dependency Visualizer data structure {id="structure-dep"}
| Dictionary Key | Description |
| -------------- | ----------------------------------------------------------------------------------------------------------- |
| `words` | List of dictionaries describing a word token (see structure below). ~~List[Dict[str, Any]]~~ |
| `arcs` | List of dictionaries describing the relations between words (see structure below). ~~List[Dict[str, Any]]~~ |
| _Optional_ | |
| `title` | Title of the visualization. ~~Optional[str]~~ |
| `settings` | Dependency Visualizer options (see [here](/api/top-level#displacy_options)). ~~Dict[str, Any]~~ |
<Accordion title="Words data structure">
| Dictionary Key | Description |
| -------------- | ---------------------------------------- |
| `text` | Text content of the word. ~~str~~ |
| `tag` | Fine-grained part-of-speech. ~~str~~ |
| `lemma` | Base form of the word. ~~Optional[str]~~ |
</Accordion>
<Accordion title="Arcs data structure">
| Dictionary Key | Description |
| -------------- | ---------------------------------------------------- |
| `start` | The index of the starting token. ~~int~~ |
| `end` | The index of the ending token. ~~int~~ |
| `label` | The type of dependency relation. ~~str~~ |
| `dir` | Direction of the relation (`left`, `right`). ~~str~~ |
</Accordion>
> #### ENT example data structure
>
> ```json
> {
> "text": "But Google is starting from behind.",
> "ents": [{ "start": 4, "end": 10, "label": "ORG" }]
> }
> ```
#### Named Entity Recognition data structure {id="structure-ent"}
| Dictionary Key | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `text` | String representation of the document text. ~~str~~ |
| `ents` | List of dictionaries describing entities (see structure below). ~~List[Dict[str, Any]]~~ |
| _Optional_ | |
| `title` | Title of the visualization. ~~Optional[str]~~ |
| `settings` | Entity Visualizer options (see [here](/api/top-level#displacy_options)). ~~Dict[str, Any]~~ |
<Accordion title="Ents data structure">
| Dictionary Key | Description |
| -------------- | ---------------------------------------------------------------------- |
| `start` | The index of the first character of the entity. ~~int~~ |
| `end` | The index of the last character of the entity. (not inclusive) ~~int~~ |
| `label` | Label attached to the entity. ~~str~~ |
| _Optional_ | |
| `kb_id` | `KnowledgeBase` ID. ~~str~~ |
| `kb_url` | `KnowledgeBase` URL. ~~str~~ |
</Accordion>
> #### SPAN example data structure
>
> ```json
> {
> "text": "Welcome to the Bank of China.",
> "spans": [
> { "start_token": 3, "end_token": 6, "label": "ORG" },
> { "start_token": 5, "end_token": 6, "label": "GPE" }
> ],
> "tokens": ["Welcome", "to", "the", "Bank", "of", "China", "."]
> }
> ```
#### Span Classification data structure {id="structure-span"}
| Dictionary Key | Description |
| -------------- | ----------------------------------------------------------------------------------------- |
| `text` | String representation of the document text. ~~str~~ |
| `spans` | List of dictionaries describing spans (see structure below). ~~List[Dict[str, Any]]~~ |
| `tokens` | List of word tokens. ~~List[str]~~ |
| _Optional_ | |
| `title` | Title of the visualization. ~~Optional[str]~~ |
| `settings` | Span Visualizer options (see [here](/api/top-level#displacy_options)). ~~Dict[str, Any]~~ |
<Accordion title="Spans data structure">
| Dictionary Key | Description |
| -------------- | ------------------------------------------------------------- |
| `start_token` | The index of the first token of the span in `tokens`. ~~int~~ |
| `end_token` | The index of the last token of the span in `tokens`. ~~int~~ |
| `label` | Label attached to the span. ~~str~~ |
| _Optional_ | |
| `kb_id` | `KnowledgeBase` ID. ~~str~~ |
| `kb_url` | `KnowledgeBase` URL. ~~str~~ |
</Accordion>
### Visualizer options {id="displacy_options"}
The `options` argument lets you specify additional settings for each visualizer.

View File

@ -0,0 +1,513 @@
---
title: Large Language Models
teaser: Integrating LLMs into structured NLP pipelines
menu:
- ['Motivation', 'motivation']
- ['Install', 'install']
- ['Usage', 'usage']
- ['Logging', 'logging']
- ['API', 'api']
- ['Tasks', 'tasks']
- ['Models', 'models']
---
[The spacy-llm package](https://github.com/explosion/spacy-llm) integrates Large
Language Models (LLMs) into spaCy pipelines, featuring a modular system for
**fast prototyping** and **prompting**, and turning unstructured responses into
**robust outputs** for various NLP tasks, **no training data** required.
- Serializable `llm` **component** to integrate prompts into your pipeline
- **Modular functions** to define the [**task**](#tasks) (prompting and parsing)
and [**model**](#models) (model to use)
- Support for **hosted APIs** and self-hosted **open-source models**
- Integration with [`LangChain`](https://github.com/hwchase17/langchain)
- Access to
**[OpenAI API](https://platform.openai.com/docs/api-reference/introduction)**,
including GPT-4 and various GPT-3 models
- Built-in support for various **open-source** models hosted on
[Hugging Face](https://huggingface.co/)
- Usage examples for standard NLP tasks such as **Named Entity Recognition** and
**Text Classification**
- Easy implementation of **your own functions** via the
[registry](/api/top-level#registry) for custom prompting, parsing and model
integrations
## Motivation {id="motivation"}
Large Language Models (LLMs) feature powerful natural language understanding
capabilities. With only a few (and sometimes no) examples, an LLM can be
prompted to perform custom NLP tasks such as text categorization, named entity
recognition, coreference resolution, information extraction and more.
Supervised learning is much worse than LLM prompting for prototyping, but for
many tasks it's much better for production. A transformer model that runs
comfortably on a single GPU is extremely powerful, and it's likely to be a
better choice for any task for which you have a well-defined output. You train
the model with anything from a few hundred to a few thousand labelled examples,
and it will learn to do exactly that. Efficiency, reliability and control are
all better with supervised learning, and accuracy will generally be higher than
LLM prompting as well.
`spacy-llm` lets you have **the best of both worlds**. You can quickly
initialize a pipeline with components powered by LLM prompts, and freely mix in
components powered by other approaches. As your project progresses, you can look
at replacing some or all of the LLM-powered components as you require.
Of course, there can be components in your system for which the power of an LLM
is fully justified. If you want a system that can synthesize information from
multiple documents in subtle ways and generate a nuanced summary for you, bigger
is better. However, even if your production system needs an LLM for some of the
task, that doesn't mean you need an LLM for all of it. Maybe you want to use a
cheap text classification model to help you find the texts to summarize, or
maybe you want to add a rule-based system to sanity check the output of the
summary. These before-and-after tasks are much easier with a mature and
well-thought-out library, which is exactly what spaCy provides.
## Install {id="install"}
`spacy-llm` will be installed automatically in future spaCy versions. For now,
you can run the following in the same virtual environment where you already have
`spacy` [installed](/usage).
> ⚠️ This package is still experimental and it is possible that changes made to
> the interface will be breaking in minor version updates.
```bash
python -m pip install spacy-llm
```
## Usage {id="usage"}
The task and the model have to be supplied to the `llm` pipeline component using
the [config system](/api/data-formats#config). This package provides various
built-in functionality, as detailed in the [API](#-api) documentation.
### Example 1: Add a text classifier using a GPT-3 model from OpenAI {id="example-1"}
Create a new API key from openai.com or fetch an existing one, and ensure the
keys are set as environmental variables. For more background information, see
the [OpenAI](/api/large-language-models#gpt-3-5) section.
Create a config file `config.cfg` containing at least the following (or see the
full example
[here](https://github.com/explosion/spacy-llm/tree/main/usage_examples/textcat_openai)):
```ini
[nlp]
lang = "en"
pipeline = ["llm"]
[components]
[components.llm]
factory = "llm"
[components.llm.task]
@llm_tasks = "spacy.TextCat.v2"
labels = ["COMPLIMENT", "INSULT"]
[components.llm.model]
@llm_models = "spacy.GPT-3-5.v1"
config = {"temperature": 0.0}
```
Now run:
```python
from spacy_llm.util import assemble
nlp = assemble("config.cfg")
doc = nlp("You look gorgeous!")
print(doc.cats)
```
### Example 2: Add NER using an open-source model through Hugging Face {id="example-2"}
To run this example, ensure that you have a GPU enabled, and `transformers`,
`torch` and CUDA installed. For more background information, see the
[DollyHF](/api/large-language-models#dolly) section.
Create a config file `config.cfg` containing at least the following (or see the
full example
[here](https://github.com/explosion/spacy-llm/tree/main/usage_examples/ner_dolly)):
```ini
[nlp]
lang = "en"
pipeline = ["llm"]
[components]
[components.llm]
factory = "llm"
[components.llm.task]
@llm_tasks = "spacy.NER.v3"
labels = ["PERSON", "ORGANISATION", "LOCATION"]
[components.llm.model]
@llm_models = "spacy.Dolly.v1"
# For better performance, use dolly-v2-12b instead
name = "dolly-v2-3b"
```
Now run:
```python
from spacy_llm.util import assemble
nlp = assemble("config.cfg")
doc = nlp("Jack and Jill rode up the hill in Les Deux Alpes")
print([(ent.text, ent.label_) for ent in doc.ents])
```
Note that Hugging Face will download the `"databricks/dolly-v2-3b"` model the
first time you use it. You can
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
by setting the environmental variable `HF_HOME`. Also, you can upgrade the model
to be `"databricks/dolly-v2-12b"` for better performance.
### Example 3: Create the component directly in Python {id="example-3"}
The `llm` component behaves as any other component does, and there are
[task-specific components](/api/large-language-models#config) defined to
help you hit the ground running with a reasonable built-in task implementation.
```python
import spacy
nlp = spacy.blank("en")
llm_ner = nlp.add_pipe("llm_ner")
llm_ner.add_label("PERSON")
llm_ner.add_label("LOCATION")
nlp.initialize()
doc = nlp("Jack and Jill rode up the hill in Les Deux Alpes")
print([(ent.text, ent.label_) for ent in doc.ents])
```
Note that for efficient usage of resources, typically you would use
[`nlp.pipe(docs)`](/api/language#pipe) with a batch, instead of calling
`nlp(doc)` with a single document.
### Example 4: Implement your own custom task {id="example-4"}
To write a [`task`](#tasks), you need to implement two functions:
`generate_prompts` that takes a list of [`Doc`](/api/doc) objects and transforms
them into a list of prompts, and `parse_responses` that transforms the LLM
outputs into annotations on the [`Doc`](/api/doc), e.g. entity spans, text
categories and more.
To register your custom task, decorate a factory function using the
`spacy_llm.registry.llm_tasks` decorator with a custom name that you can refer
to in your config.
> 📖 For more details, see the
> [**usage example on writing your own task**](https://github.com/explosion/spacy-llm/tree/main/usage_examples#writing-your-own-task)
```python
from typing import Iterable, List
from spacy.tokens import Doc
from spacy_llm.registry import registry
from spacy_llm.util import split_labels
@registry.llm_tasks("my_namespace.MyTask.v1")
def make_my_task(labels: str, my_other_config_val: float) -> "MyTask":
labels_list = split_labels(labels)
return MyTask(labels=labels_list, my_other_config_val=my_other_config_val)
class MyTask:
def __init__(self, labels: List[str], my_other_config_val: float):
...
def generate_prompts(self, docs: Iterable[Doc]) -> Iterable[str]:
...
def parse_responses(
self, docs: Iterable[Doc], responses: Iterable[str]
) -> Iterable[Doc]:
...
```
```ini
# config.cfg (excerpt)
[components.llm.task]
@llm_tasks = "my_namespace.MyTask.v1"
labels = LABEL1,LABEL2,LABEL3
my_other_config_val = 0.3
```
## Logging {id="logging"}
spacy-llm has a built-in logger that can log the prompt sent to the LLM as well
as its raw response. This logger uses the debug level and by default has a
`logging.NullHandler()` configured.
In order to use this logger, you can setup a simple handler like this:
```python
import logging
import spacy_llm
spacy_llm.logger.addHandler(logging.StreamHandler())
spacy_llm.logger.setLevel(logging.DEBUG)
```
> NOTE: Any `logging` handler will work here so you probably want to use some
> sort of rotating `FileHandler` as the generated prompts can be quite long,
> especially for tasks with few-shot examples.
Then when using the pipeline you'll be able to view the prompt and response.
E.g. with the config and code from [Example 1](#example-1) above:
```python
from spacy_llm.util import assemble
nlp = assemble("config.cfg")
doc = nlp("You look gorgeous!")
print(doc.cats)
```
You will see `logging` output similar to:
```
Generated prompt for doc: You look gorgeous!
You are an expert Text Classification system. Your task is to accept Text as input
and provide a category for the text based on the predefined labels.
Classify the text below to any of the following labels: COMPLIMENT, INSULT
The task is non-exclusive, so you can provide more than one label as long as
they're comma-delimited. For example: Label1, Label2, Label3.
Do not put any other text in your answer, only one or more of the provided labels with nothing before or after.
If the text cannot be classified into any of the provided labels, answer `==NONE==`.
Here is the text that needs classification
Text:
'''
You look gorgeous!
'''
Model response for doc: You look gorgeous!
COMPLIMENT
```
`print(doc.cats)` to standard output should look like:
```
{'COMPLIMENT': 1.0, 'INSULT': 0.0}
```
## API {id="api"}
`spacy-llm` exposes an `llm` factory with
[configurable settings](/api/large-language-models#config).
An `llm` component is defined by two main settings:
- A [**task**](#tasks), defining the prompt to send to the LLM as well as the
functionality to parse the resulting response back into structured fields on
the [Doc](/api/doc) objects.
- A [**model**](#models) defining the model to use and how to connect to it.
Note that `spacy-llm` supports both access to external APIs (such as OpenAI)
as well as access to self-hosted open-source LLMs (such as using Dolly through
Hugging Face).
Moreover, `spacy-llm` exposes a customizable [**caching**](#cache) functionality
to avoid running the same document through an LLM service (be it local or
through a REST API) more than once.
Finally, you can choose to save a stringified version of LLM prompts/responses
within the `Doc.user_data["llm_io"]` attribute by setting `save_io` to `True`.
`Doc.user_data["llm_io"]` is a dictionary containing one entry for every LLM
component within the `nlp` pipeline. Each entry is itself a dictionary, with two
keys: `prompt` and `response`.
A note on `validate_types`: by default, `spacy-llm` checks whether the
signatures of the `model` and `task` callables are consistent with each other
and emits a warning if they don't. `validate_types` can be set to `False` if you
want to disable this behavior.
### Tasks {id="tasks"}
A _task_ defines an NLP problem or question, that will be sent to the LLM via a
prompt. Further, the task defines how to parse the LLM's responses back into
structured information. All tasks are registered in the `llm_tasks` registry.
Practically speaking, a task should adhere to the `Protocol` `LLMTask` defined
in [`ty.py`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/ty.py).
It needs to define a `generate_prompts` function and a `parse_responses`
function.
| Task | Description |
| --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`task.generate_prompts`](/api/large-language-models#task-generate-prompts) | Takes a collection of documents, and returns a collection of "prompts", which can be of type `Any`. |
| [`task.parse_responses`](/api/large-language-models#task-parse-responses) | Takes a collection of LLM responses and the original documents, parses the responses into structured information, and sets the annotations on the documents. |
Moreover, the task may define an optional [`scorer` method](/api/scorer#score).
It should accept an iterable of `Example` objects as input and return a score
dictionary. If the `scorer` method is defined, `spacy-llm` will call it to
evaluate the component.
| Component | Description |
| ----------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
| [`spacy.Summarization.v1`](/api/large-language-models#summarization-v1) | The summarization task prompts the model for a concise summary of the provided text. |
| [`spacy.NER.v3`](/api/large-language-models#ner-v3) | Implements Chain-of-Thought reasoning for NER extraction - obtains higher accuracy than v1 or v2. |
| [`spacy.NER.v2`](/api/large-language-models#ner-v2) | Builds on v1 and additionally supports defining the provided labels with explicit descriptions. |
| [`spacy.NER.v1`](/api/large-language-models#ner-v1) | The original version of the built-in NER task supports both zero-shot and few-shot prompting. |
| [`spacy.SpanCat.v3`](/api/large-language-models#spancat-v3) | Adaptation of the v3 NER task to support overlapping entities and store its annotations in `doc.spans`. |
| [`spacy.SpanCat.v2`](/api/large-language-models#spancat-v2) | Adaptation of the v2 NER task to support overlapping entities and store its annotations in `doc.spans`. |
| [`spacy.SpanCat.v1`](/api/large-language-models#spancat-v1) | Adaptation of the v1 NER task to support overlapping entities and store its annotations in `doc.spans`. |
| [`spacy.REL.v1`](/api/large-language-models#rel-v1) | Relation Extraction task supporting both zero-shot and few-shot prompting. |
| [`spacy.TextCat.v3`](/api/large-language-models#textcat-v3) | Version 3 builds on v2 and allows setting definitions of labels. |
| [`spacy.TextCat.v2`](/api/large-language-models#textcat-v2) | Version 2 builds on v1 and includes an improved prompt template. |
| [`spacy.TextCat.v1`](/api/large-language-models#textcat-v1) | Version 1 of the built-in TextCat task supports both zero-shot and few-shot prompting. |
| [`spacy.Lemma.v1`](/api/large-language-models#lemma-v1) | Lemmatizes the provided text and updates the `lemma_` attribute of the tokens accordingly. |
| [`spacy.Sentiment.v1`](/api/large-language-models#sentiment-v1) | Performs sentiment analysis on provided texts. |
| [`spacy.NoOp.v1`](/api/large-language-models#noop-v1) | This task is only useful for testing - it tells the LLM to do nothing, and does not set any fields on the `docs`. |
#### Providing examples for few-shot prompts {id="few-shot-prompts"}
All built-in tasks support few-shot prompts, i. e. including examples in a
prompt. Examples can be supplied in two ways: (1) as a separate file containing
only examples or (2) by initializing `llm` with a `get_examples()` callback
(like any other pipeline component).
##### (1) Few-shot example file
A file containing examples for few-shot prompting can be configured like this:
```ini
[components.llm.task]
@llm_tasks = "spacy.NER.v2"
labels = PERSON,ORGANISATION,LOCATION
[components.llm.task.examples]
@misc = "spacy.FewShotReader.v1"
path = "ner_examples.yml"
```
The supplied file has to conform to the format expected by the required task
(see the task documentation further down).
##### (2) Initializing the `llm` component with a `get_examples()` callback
Alternatively, you can initialize your `nlp` pipeline by providing a
`get_examples` callback for [`nlp.initialize`](/api/language#initialize) and
setting `n_prompt_examples` to a positive number to automatically fetch a few
examples for few-shot learning. Set `n_prompt_examples` to `-1` to use all
examples as part of the few-shot learning prompt.
```ini
[initialize.components.llm]
n_prompt_examples = 3
```
### Model {id="models"}
A _model_ defines which LLM model to query, and how to query it. It can be a
simple function taking a collection of prompts (consistent with the output type
of `task.generate_prompts()`) and returning a collection of responses
(consistent with the expected input of `parse_responses`). Generally speaking,
it's a function of type `Callable[[Iterable[Any]], Iterable[Any]]`, but specific
implementations can have other signatures, like
`Callable[[Iterable[str]], Iterable[str]]`.
All built-in models are registered in `llm_models`. If no model is specified,
the repo currently connects to the `OpenAI` API by default using REST, and
accesses the `"gpt-3.5-turbo"` model.
Currently three different approaches to use LLMs are supported:
1. `spacy-llm`s native REST interface. This is the default for all hosted models
(e. g. OpenAI, Cohere, Anthropic, ...).
2. A HuggingFace integration that allows to run a limited set of HF models
locally.
3. A LangChain integration that allows to run any model supported by LangChain
(hosted or locally).
Approaches 1. and 2 are the default for hosted model and local models,
respectively. Alternatively you can use LangChain to access hosted or local
models by specifying one of the models registered with the `langchain.` prefix.
<Infobox>
_Why LangChain if there are also are a native REST and a HuggingFace interface? When should I use what?_
Third-party libraries like `langchain` focus on prompt management, integration
of many different LLM APIs, and other related features such as conversational
memory or agents. `spacy-llm` on the other hand emphasizes features we consider
useful in the context of NLP pipelines utilizing LLMs to process documents
(mostly) independent from each other. It makes sense that the feature sets of
such third-party libraries and `spacy-llm` aren't identical - and users might
want to take advantage of features not available in `spacy-llm`.
The advantage of implementing our own REST and HuggingFace integrations is that
we can ensure a larger degree of stability and robustness, as we can guarantee
backwards-compatibility and more smoothly integrated error handling.
If however there are features or APIs not natively covered by `spacy-llm`, it's
trivial to utilize LangChain to cover this - and easy to customize the prompting
mechanism, if so required.
</Infobox>
<Infobox variant="warning">
Note that when using hosted services, you have to ensure that the [proper API
keys](/api/large-language-models#api-keys) are set as environment variables as described by the corresponding
provider's documentation.
</Infobox>
| Model | Description |
| ----------------------------------------------------------------------- | ---------------------------------------------- |
| [`spacy.GPT-4.v2`](/api/large-language-models#models-rest) | OpenAIs `gpt-4` model family. |
| [`spacy.GPT-3-5.v2`](/api/large-language-models#models-rest) | OpenAIs `gpt-3-5` model family. |
| [`spacy.Text-Davinci.v2`](/api/large-language-models#models-rest) | OpenAIs `text-davinci` model family. |
| [`spacy.Code-Davinci.v2`](/api/large-language-models#models-rest) | OpenAIs `code-davinci` model family. |
| [`spacy.Text-Curie.v2`](/api/large-language-models#models-rest) | OpenAIs `text-curie` model family. |
| [`spacy.Text-Babbage.v2`](/api/large-language-models#models-rest) | OpenAIs `text-babbage` model family. |
| [`spacy.Text-Ada.v2`](/api/large-language-models#models-rest) | OpenAIs `text-ada` model family. |
| [`spacy.Davinci.v2`](/api/large-language-models#models-rest) | OpenAIs `davinci` model family. |
| [`spacy.Curie.v2`](/api/large-language-models#models-rest) | OpenAIs `curie` model family. |
| [`spacy.Babbage.v2`](/api/large-language-models#models-rest) | OpenAIs `babbage` model family. |
| [`spacy.Ada.v2`](/api/large-language-models#models-rest) | OpenAIs `ada` model family. |
| [`spacy.Command.v1`](/api/large-language-models#models-rest) | Coheres `command` model family. |
| [`spacy.Claude-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-2` model family. |
| [`spacy.Claude-1.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1` model family. |
| [`spacy.Claude-instant-1.v1`](/api/large-language-models#models-rest) | Anthropics `claude-instant-1` model family. |
| [`spacy.Claude-instant-1-1.v1`](/api/large-language-models#models-rest) | Anthropics `claude-instant-1.1` model family. |
| [`spacy.Claude-1-0.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.0` model family. |
| [`spacy.Claude-1-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.2` model family. |
| [`spacy.Claude-1-3.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.3` model family. |
| [`spacy.Dolly.v1`](/api/large-language-models#models-hf) | Dolly models through HuggingFace. |
| [`spacy.Falcon.v1`](/api/large-language-models#models-hf) | Falcon models through HuggingFace. |
| [`spacy.Llama2.v1`](/api/large-language-models#models-hf) | Llama2 models through HuggingFace. |
| [`spacy.StableLM.v1`](/api/large-language-models#models-hf) | StableLM models through HuggingFace. |
| [`spacy.OpenLLaMA.v1`](/api/large-language-models#models-hf) | OpenLLaMA models through HuggingFace. |
| [LangChain models](/api/large-language-models#langchain-models) | LangChain models for API retrieval. |
Note that the chat models variants of Llama 2 are currently not supported. This
is because they need a particular prompting setup and don't add any discernible
benefits in the use case of `spacy-llm` (i. e. no interactive chat) compared to
the completion model variants.
### Cache {id="cache"}
Interacting with LLMs, either through an external API or a local instance, is
costly. Since developing an NLP pipeline generally means a lot of exploration
and prototyping, `spacy-llm` implements a built-in
[cache](/api/large-language-models#cache) to avoid reprocessing the same
documents at each run that keeps batches of documents stored on disk.
### Various functions {id="various-functions"}
| Function | Description |
| ----------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`spacy.FewShotReader.v1`](/api/large-language-models#fewshotreader-v1) | This function is registered in spaCy's `misc` registry, and reads in examples from a `.yml`, `.yaml`, `.json` or `.jsonl` file. It uses [`srsly`](https://github.com/explosion/srsly) to read in these files and parses them depending on the file extension. |
| [`spacy.FileReader.v1`](/api/large-language-models#filereader-v1) | This function is registered in spaCy's `misc` registry, and reads a file provided to the `path` to return a `str` representation of its contents. This function is typically used to read [Jinja](https://jinja.palletsprojects.com/en/3.1.x/) files containing the prompt template. |
| [Normalizer functions](/api/large-language-models#normalizer-functions) | These functions provide simple normalizations for string comparisons, e.g. between a list of specified labels and a label given in the raw text of the LLM response. |

View File

@ -1299,9 +1299,9 @@ correct type.
```python {title="functions.py",highlight="1"}
@spacy.registry.tokenizers("bert_word_piece_tokenizer")
def create_whitespace_tokenizer(vocab_file: str, lowercase: bool):
def create_bert_tokenizer(vocab_file: str, lowercase: bool):
def create_tokenizer(nlp):
return BertWordPieceTokenizer(nlp.vocab, vocab_file, lowercase)
return BertTokenizer(nlp.vocab, vocab_file, lowercase)
return create_tokenizer
```

View File

@ -244,7 +244,7 @@ tagging pipeline. This is also why the pipeline state is always held by the
together and returns an instance of `Language` with a pipeline set and access to
the binary data:
```python {title="spacy.load under the hood"}
```python {title="spacy.load under the hood (abstract example)"}
lang = "en"
pipeline = ["tok2vec", "tagger", "parser", "ner", "attribute_ruler", "lemmatizer"]
data_path = "path/to/en_core_web_sm/en_core_web_sm-3.0.0"
@ -252,7 +252,7 @@ data_path = "path/to/en_core_web_sm/en_core_web_sm-3.0.0"
cls = spacy.util.get_lang_class(lang) # 1. Get Language class, e.g. English
nlp = cls() # 2. Initialize it
for name in pipeline:
nlp.add_pipe(name) # 3. Add the component to the pipeline
nlp.add_pipe(name, config={...}) # 3. Add the component to the pipeline
nlp.from_disk(data_path) # 4. Load in the binary data
```

View File

@ -311,7 +311,7 @@ import re
nlp = spacy.load("en_core_web_sm")
doc = nlp("The United States of America (USA) are commonly known as the United States (U.S. or US) or America.")
expression = r"[Uu](nited|\\.?) ?[Ss](tates|\\.?)"
expression = r"[Uu](nited|\.?) ?[Ss](tates|\.?)"
for match in re.finditer(expression, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
@ -850,14 +850,14 @@ negative pattern. To keep it simple, we'll either add or subtract `0.1` points
this way, the score will also reflect combinations of emoji, even positive _and_
negative ones.
With a library like [Emojipedia](https://github.com/bcongdon/python-emojipedia),
we can also retrieve a short description for each emoji for example, 😍's
official title is "Smiling Face With Heart-Eyes". Assigning it to a
With a library like [emoji](https://github.com/carpedm20/emoji), we can also
retrieve a short description for each emoji for example, 😍's official title
is "Smiling Face With Heart-Eyes". Assigning it to a
[custom attribute](/usage/processing-pipelines#custom-components-attributes) on
the emoji span will make it available as `span._.emoji_desc`.
```python
from emojipedia import Emojipedia # Installation: pip install emojipedia
import emoji # Installation: pip install emoji
from spacy.tokens import Span # Get the global Span object
Span.set_extension("emoji_desc", default=None) # Register the custom attribute
@ -869,9 +869,9 @@ def label_sentiment(matcher, doc, i, matches):
elif doc.vocab.strings[match_id] == "SAD":
doc.sentiment -= 0.1 # Subtract 0.1 for negative sentiment
span = doc[start:end]
emoji = Emojipedia.search(span[0].text) # Get data for emoji
span._.emoji_desc = emoji.title # Assign emoji description
# Verify if it is an emoji and set the extension attribute correctly.
if emoji.is_emoji(span[0].text):
span._.emoji_desc = emoji.demojize(span[0].text, delimiters=("", ""), language=doc.lang_).replace("_", " ")
```
To label the hashtags, we can use a
@ -1097,7 +1097,7 @@ come directly from
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
| Symbol | Description |
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `A < B` | `A` is the immediate dependent of `B`. |
| `A > B` | `A` is the immediate head of `B`. |
| `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. |

View File

@ -180,7 +180,7 @@ Some of the main advantages and features of spaCy's training config are:
Under the hood, the config is parsed into a dictionary. It's divided into
sections and subsections, indicated by the square brackets and dot notation. For
example, `[training]` is a section and `[training.batch_size]` a subsection.
example, `[training]` is a section and `[training.batcher]` a subsection.
Subsections can define values, just like a dictionary, or use the `@` syntax to
refer to [registered functions](#config-functions). This allows the config to
not just define static settings, but also construct objects like architectures,
@ -254,7 +254,7 @@ For cases like this, you can set additional command-line options starting with
block.
```bash
$ python -m spacy train config.cfg --paths.train ./corpus/train.spacy --paths.dev ./corpus/dev.spacy --training.batch_size 128
$ python -m spacy train config.cfg --paths.train ./corpus/train.spacy --paths.dev ./corpus/dev.spacy --training.max_epochs 3
```
Only existing sections and values in the config can be overwritten. At the end
@ -279,7 +279,7 @@ process. Environment variables **take precedence** over CLI overrides and values
defined in the config file.
```bash
$ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.batch_size 128" ./your_script.sh
$ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.max_epochs 3" ./your_script.sh
```
### Reading from standard input {id="config-stdin"}
@ -578,16 +578,17 @@ now-updated model to the predicted docs.
The training configuration defined in the config file doesn't have to only
consist of static values. Some settings can also be **functions**. For instance,
the `batch_size` can be a number that doesn't change, or a schedule, like a
the batch size can be a number that doesn't change, or a schedule, like a
sequence of compounding values, which has shown to be an effective trick (see
[Smith et al., 2017](https://arxiv.org/abs/1711.00489)).
```ini {title="With static value"}
[training]
batch_size = 128
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
size = 3000
```
To refer to a function instead, you can make `[training.batch_size]` its own
To refer to a function instead, you can make `[training.batcher.size]` its own
section and use the `@` syntax to specify the function and its arguments in
this case [`compounding.v1`](https://thinc.ai/docs/api-schedules#compounding)
defined in the [function registry](/api/top-level#registry). All other values
@ -606,7 +607,7 @@ from your configs.
> optimizer.
```ini {title="With registered function"}
[training.batch_size]
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
@ -1027,14 +1028,14 @@ def my_custom_schedule(start: int = 1, factor: float = 1.001):
```
In your config, you can now reference the schedule in the
`[training.batch_size]` block via `@schedules`. If a block contains a key
`[training.batcher.size]` block via `@schedules`. If a block contains a key
starting with an `@`, it's interpreted as a reference to a function. All other
settings in the block will be passed to the function as keyword arguments. Keep
in mind that the config shouldn't have any hidden defaults and all arguments on
the functions need to be represented in the config.
```ini {title="config.cfg (excerpt)"}
[training.batch_size]
[training.batcher.size]
@schedules = "my_custom_schedule.v1"
start = 2
factor = 1.005

View File

@ -349,7 +349,8 @@ or
[SyntaxNet](https://github.com/tensorflow/models/tree/master/research/syntaxnet).
If you set `manual=True` on either `render()` or `serve()`, you can pass in data
in displaCy's format as a dictionary (instead of `Doc` objects). There are
helper functions for converting `Doc` objects to displaCy's format for use with
helper functions for converting `Doc` objects to
[displaCy's format](/api/top-level#displacy_structures) for use with
`manual=True`: [`displacy.parse_deps`](/api/top-level#displacy.parse_deps),
[`displacy.parse_ents`](/api/top-level#displacy.parse_ents), and
[`displacy.parse_spans`](/api/top-level#displacy.parse_spans).

View File

@ -26,16 +26,19 @@
{ "text": "Processing Pipelines", "url": "/usage/processing-pipelines" },
{
"text": "Embeddings & Transformers",
"url": "/usage/embeddings-transformers",
"url": "/usage/embeddings-transformers"
},
{
"text": "Large Language Models",
"url": "/usage/large-language-models",
"tag": "new"
},
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
{ "text": "Training Models", "url": "/usage/training" },
{
"text": "Layers & Model Architectures",
"url": "/usage/layers-architectures",
"tag": "new"
"url": "/usage/layers-architectures"
},
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
{ "text": "spaCy Projects", "url": "/usage/projects" },
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
{ "text": "Visualizers", "url": "/usage/visualizers" }
]
@ -103,6 +106,7 @@
{ "text": "EntityLinker", "url": "/api/entitylinker" },
{ "text": "EntityRecognizer", "url": "/api/entityrecognizer" },
{ "text": "EntityRuler", "url": "/api/entityruler" },
{ "text": "Large Language Models", "url": "/api/large-language-models" },
{ "text": "Lemmatizer", "url": "/api/lemmatizer" },
{ "text": "Morphologizer", "url": "/api/morphologizer" },
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },

View File

@ -17,6 +17,31 @@
"category": ["extension"],
"tags": []
},
{
"id": "sayswho",
"title": "SaysWho",
"slogan": "Quote identification, attribution and resolution",
"description": "A Python package for identifying and attributing quotes in text. It uses a combination of spaCy functionality, logic and grammar to find quotes and their speakers, then uses the spaCy coreferencing model to better clarify who is speaking. Currently English only.",
"github": "afriedman412/sayswho",
"pip": "sayswho",
"code_language": "python",
"author": "Andy Friedman",
"author_links": {
"twitter": "@steadynappin",
"github": "afriedman412"
},
"code_example": [
"from sayswho import SaysWho",
"text = open(\"path/to/your/text_file.txt\").read()",
"sw = SaysWho()",
"sw.attribute(text)",
"sw.expand_match() # see quote/cluster matches",
"sw.render_to_html() # output your text, quotes and cluster matches to an html file called \"temp.html\""
],
"category": ["standalone"],
"tags": ["attribution", "coref", "text-processing"]
},
{
"id": "parsigs",
"title": "parsigs",
@ -67,6 +92,33 @@
"category": ["pipeline", "research"],
"tags": ["latin"]
},
{
"id": "odycy",
"title": "OdyCy",
"slogan": "General-purpose language pipelines for premodern Greek.",
"description": "Academically validated modular NLP pipelines for premodern Greek. odyCy achieves state of the art performance on multiple tasks on unseen test data from the Universal Dependencies Perseus treebank, and performs second best on the PROIEL treebanks test set on even more tasks. In addition performance also seems relatively stable across the two evaluation datasets in comparison with other NLP pipelines. OdyCy is being used at the Center for Humanities Computing for preprocessing and analyzing Ancient Greek corpora for New Testament research, meaning that you can expect consistent maintenance and improvements.",
"github": "centre-for-humanities-computing/odyCy",
"code_example": [
"# To install the high-accuracy transformer-based pipeline",
"# pip install https://huggingface.co/chcaa/grc_odycy_joint_trf/resolve/main/grc_odycy_joint_trf-any-py3-none-any.whl",
"import spacy",
"",
"nlp = spacy.load('grc_odycy_joint_trf')",
"",
"doc = nlp('τὴν γοῦν Ἀττικὴν ἐκ τοῦ ἐπὶ πλεῖστον διὰ τὸ λεπτόγεων ἀστασίαστον οὖσαν ἄνθρωποι ᾤκουν οἱ αὐτοὶ αἰεί.')"
],
"code_language": "python",
"url": "https://centre-for-humanities-computing.github.io/odyCy/",
"thumb": "https://raw.githubusercontent.com/centre-for-humanities-computing/odyCy/7b94fec60679d06272dca88a4dcfe0f329779aea/docs/_static/logo.svg",
"image": "https://github.com/centre-for-humanities-computing/odyCy/raw/main/docs/_static/logo_with_text_below.svg",
"author": "Jan Kostkan, Márton Kardos (Center for Humanities Computing, Aarhus University)",
"author_links": {
"github": "centre-for-humanities-computing",
"website": "https://chc.au.dk/"
},
"category": ["pipeline", "standalone", "research"],
"tags": ["ancient Greek"]
},
{
"id": "spacy-wasm",
"title": "spacy-wasm",
@ -2754,7 +2806,7 @@
"",
"# see github repo for examples on sentence-transformers and Huggingface",
"nlp = spacy.load('en_core_web_md')",
"nlp.add_pipe(\"text_categorizer\", ",
"nlp.add_pipe(\"classy_classification\", ",
" config={",
" \"data\": data,",
" \"model\": \"spacy\"",
@ -2958,8 +3010,8 @@
"# Load the spaCy language model:",
"nlp = spacy.load(\"en_core_web_sm\")",
"",
"# Add the \"text_categorizer\" pipeline component to the spaCy model, and configure it with SetFit parameters:",
"nlp.add_pipe(\"text_categorizer\", config={",
"# Add the \"spacy_setfit\" pipeline component to the spaCy model, and configure it with SetFit parameters:",
"nlp.add_pipe(\"spacy_setfit\", config={",
" \"pretrained_model_name_or_path\": \"paraphrase-MiniLM-L3-v2\",",
" \"setfit_trainer_args\": {",
" \"train_dataset\": train_dataset",
@ -4392,6 +4444,62 @@
},
"category": ["pipeline", "standalone", "scientific"],
"tags": ["ner"]
},
{
"id": "hobbit-spacy",
"title": "Hobbit spaCy",
"slogan": "NLP for Middle Earth",
"description": "Hobbit spaCy is a custom spaCy pipeline designed specifically for working with Middle Earth and texts from the world of J.R.R. Tolkien.",
"github": "wjbmattingly/hobbit-spacy",
"pip": "en-hobbit",
"code_example": [
"import spacy",
"",
"nlp = spacy.load('en_hobbit')",
"doc = nlp('Frodo saw Glorfindel and Glóin; and in a corner alone Strider was sitting, clad in his old travel - worn clothes again')"
],
"code_language": "python",
"thumb": "https://github.com/wjbmattingly/hobbit-spacy/blob/main/images/hobbit-thumbnail.png?raw=true",
"image": "https://github.com/wjbmattingly/hobbit-spacy/raw/main/images/hobbitspacy.png",
"author": "W.J.B. Mattingly",
"author_links": {
"twitter": "wjb_mattingly",
"github": "wjbmattingly",
"website": "https://wjbmattingly.com"
},
"category": ["pipeline", "standalone"],
"tags": ["spans", "rules", "ner"]
},
{
"id": "rolegal",
"title": "A spaCy Package for Romanian Legal Document Processing",
"thumb": "https://raw.githubusercontent.com/senisioi/rolegal/main/img/paper200x200.jpeg",
"slogan": "rolegal: a spaCy Package for Noisy Romanian Legal Document Processing",
"description": "This is a spaCy language model for Romanian legal domain trained with floret 4-gram to 5-gram embeddings and `LEGAL` entity recognition. Useful for processing OCR-resulted noisy legal documents.",
"github": "senisioi/rolegal",
"pip": "ro-legal-fl",
"tags": ["legal", "floret", "ner", "romanian"],
"code_example": [
"import spacy",
"nlp = spacy.load(\"ro_legal_fl\")",
"",
"doc = nlp(\"Titlul III din LEGEA nr. 255 din 19 iulie 2013, publicată în MONITORUL OFICIAL\")",
"# legal entity identification",
"for entity in doc.ents:",
" print('entity: ', entity, '; entity type: ', entity.label_)",
"",
"# floret n-gram embeddings robust to typos",
"print(nlp('achizit1e public@').similarity(nlp('achiziții publice')))",
"# 0.7393895566928835",
"print(nlp('achizitii publice').similarity(nlp('achiziții publice')))",
"# 0.8996480808279399"
],
"author": "Sergiu Nisioi",
"author_links": {
"github": "senisioi",
"website": "https://nlp.unibuc.ro/people/snisioi.html"
},
"category": ["pipeline", "training", "models"]
}
],

View File

@ -16,3 +16,9 @@ NETLIFY_NEXT_PLUGIN_SKIP = "true"
[[plugins]]
package = "@netlify/plugin-nextjs"
[[headers]]
for = "/*"
[headers.values]
X-Frame-Options = "DENY"
X-XSS-Protection = "1; mode=block"

View File

@ -106,50 +106,21 @@ const Landing = () => {
<LandingBannerGrid>
<LandingBanner
to="https://explosion.ai/custom-solutions"
label="NEW"
title="Large Language Models: Integrating LLMs into structured NLP pipelines"
to="/usage/large-language-models"
button="Learn more"
background="#E4F4F9"
color="#1e1935"
small
>
<p>
<Link to="https://explosion.ai/custom-solutions" hidden>
<ImageFill
image={tailoredPipelinesImage}
alt="spaCy Tailored Pipelines"
/>
</Link>
<Link to="https://github.com/explosion/spacy-llm">
The spacy-llm package
</Link>{' '}
integrates Large Language Models (LLMs) into spaCy, featuring a modular
system for <strong>fast prototyping</strong> and <strong>prompting</strong>,
and turning unstructured responses into <strong>robust outputs</strong> for
various NLP tasks, <strong>no training data</strong> required.
</p>
<p>
<strong>
Get a custom spaCy pipeline, tailor-made for your NLP problem by
spaCy&apos;s core developers.
</strong>
</p>
<Ul>
<Li emoji="🔥">
<strong>Streamlined.</strong> Nobody knows spaCy better than we do. Send
us your pipeline requirements and we&apos;ll be ready to start producing
your solution in no time at all.
</Li>
<Li emoji="🐿 ">
<strong>Production ready.</strong> spaCy pipelines are robust and easy
to deploy. You&apos;ll get a complete spaCy project folder which is
ready to <InlineCode>spacy project run</InlineCode>.
</Li>
<Li emoji="🔮">
<strong>Predictable.</strong> You&apos;ll know exactly what you&apos;re
going to get and what it&apos;s going to cost. We quote fees up-front,
let you try before you buy, and don&apos;t charge for over-runs at our
end all the risk is on us.
</Li>
<Li emoji="🛠">
<strong>Maintainable.</strong> spaCy is an industry standard, and
we&apos;ll deliver your pipeline with full code, data, tests and
documentation, so your team can retrain, update and extend the solution
as your requirements change.
</Li>
</Ul>
</LandingBanner>
<LandingBanner
@ -240,21 +211,50 @@ const Landing = () => {
<LandingBannerGrid>
<LandingBanner
label="New in v3.0"
title="Transformer-based pipelines, new training system, project templates &amp; more"
to="/usage/v3"
button="See what's new"
to="https://explosion.ai/custom-solutions"
button="Learn more"
background="#E4F4F9"
color="#1e1935"
small
>
<p>
spaCy v3.0 features all new <strong>transformer-based pipelines</strong>{' '}
that bring spaCy&apos;s accuracy right up to the current{' '}
<strong>state-of-the-art</strong>. You can use any pretrained transformer to
train your own pipelines, and even share one transformer between multiple
components with <strong>multi-task learning</strong>. Training is now fully
configurable and extensible, and you can define your own custom models using{' '}
<strong>PyTorch</strong>, <strong>TensorFlow</strong> and other frameworks.
<Link to="https://explosion.ai/custom-solutions" noLinkLayout>
<ImageFill
image={tailoredPipelinesImage}
alt="spaCy Tailored Pipelines"
/>
</Link>
</p>
<p>
<strong>
Get a custom spaCy pipeline, tailor-made for your NLP problem by
spaCy&apos;s core developers.
</strong>
</p>
<Ul>
<Li emoji="🔥">
<strong>Streamlined.</strong> Nobody knows spaCy better than we do. Send
us your pipeline requirements and we&apos;ll be ready to start producing
your solution in no time at all.
</Li>
<Li emoji="🐿 ">
<strong>Production ready.</strong> spaCy pipelines are robust and easy
to deploy. You&apos;ll get a complete spaCy project folder which is
ready to <InlineCode>spacy project run</InlineCode>.
</Li>
<Li emoji="🔮">
<strong>Predictable.</strong> You&apos;ll know exactly what you&apos;re
going to get and what it&apos;s going to cost. We quote fees up-front,
let you try before you buy, and don&apos;t charge for over-runs at our
end all the risk is on us.
</Li>
<Li emoji="🛠">
<strong>Maintainable.</strong> spaCy is an industry standard, and
we&apos;ll deliver your pipeline with full code, data, tests and
documentation, so your team can retrain, update and extend the solution
as your requirements change.
</Li>
</Ul>
</LandingBanner>
<LandingBanner
to="https://course.spacy.io"
@ -264,7 +264,7 @@ const Landing = () => {
small
>
<p>
<Link to="https://course.spacy.io" hidden>
<Link to="https://course.spacy.io" noLinkLayout>
<ImageFill
image={courseImage}
alt="Advanced NLP with spaCy: A free online course"

View File

@ -10,15 +10,19 @@ const DEFAULT_PLATFORM = 'x86'
const DEFAULT_MODELS = ['en']
const DEFAULT_OPT = 'efficiency'
const DEFAULT_HARDWARE = 'cpu'
const DEFAULT_CUDA = 'cuda-autodetect'
const DEFAULT_CUDA = 'cuda11x'
const CUDA = {
'8.0': 'cuda80',
'9.0': 'cuda90',
9.1: 'cuda91',
9.2: 'cuda92',
'9.1': 'cuda91',
'9.2': 'cuda92',
'10.0': 'cuda100',
10.1: 'cuda101',
'10.2, 11.0+': 'cuda-autodetect',
'10.1': 'cuda101',
'10.2': 'cuda102',
'11.0': 'cuda110',
'11.1': 'cuda111',
'11.2-11.x': 'cuda11x',
'12.x': 'cuda12x',
}
const LANG_EXTRAS = ['ja'] // only for languages with models