mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Refactor Tok2Vec to use architecture registry (#4518)
* Add refactored tok2vec, using register_architecture * Refactor Tok2Vec * Fix ml * Fix new tok2vec * Move make_layer to util * Add wire * Fix missing import
This commit is contained in:
parent
99e309bb19
commit
406eb95a47
161
spacy/_ml.py
161
spacy/_ml.py
|
@ -3,16 +3,14 @@ from __future__ import unicode_literals
|
|||
|
||||
import numpy
|
||||
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
||||
from thinc.i2v import HashEmbed, StaticVectors
|
||||
from thinc.t2t import ExtractWindow, ParametricAttention
|
||||
from thinc.t2v import Pooling, sum_pool, mean_pool
|
||||
from thinc.misc import Residual
|
||||
from thinc.i2v import HashEmbed
|
||||
from thinc.misc import Residual, FeatureExtracter
|
||||
from thinc.misc import LayerNorm as LN
|
||||
from thinc.misc import FeatureExtracter
|
||||
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.api import with_getitem, flatten_add_lengths
|
||||
from thinc.api import uniqued, wrap, noop
|
||||
from thinc.api import with_square_sequences
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module, copy_array
|
||||
|
@ -26,12 +24,8 @@ import thinc.extra.load_nlp
|
|||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
|
||||
from .errors import Errors, user_warning, Warnings
|
||||
from . import util
|
||||
from . import ml as new_ml
|
||||
|
||||
try:
|
||||
import torch.nn
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
except ImportError:
|
||||
torch = None
|
||||
|
||||
VECTORS_KEY = "spacy_pretrained_vectors"
|
||||
|
||||
|
@ -310,6 +304,9 @@ def link_vectors_to_models(vocab):
|
|||
|
||||
|
||||
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
||||
import torch.nn
|
||||
from thinc.api import with_square_sequences
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
if depth == 0:
|
||||
return layerize(noop())
|
||||
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
|
||||
|
@ -321,77 +318,91 @@ def Tok2Vec(width, embed_size, **kwargs):
|
|||
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
||||
subword_features = kwargs.get("subword_features", True)
|
||||
char_embed = kwargs.get("char_embed", False)
|
||||
if char_embed:
|
||||
subword_features = False
|
||||
conv_depth = kwargs.get("conv_depth", 4)
|
||||
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators(
|
||||
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
|
||||
):
|
||||
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
|
||||
if subword_features:
|
||||
prefix = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
|
||||
)
|
||||
shape = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
|
||||
)
|
||||
else:
|
||||
prefix, suffix, shape = (None, None, None)
|
||||
if pretrained_vectors is not None:
|
||||
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
|
||||
|
||||
if subword_features:
|
||||
embed = uniqued(
|
||||
(glove | norm | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width * 5, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
else:
|
||||
embed = uniqued(
|
||||
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif subword_features:
|
||||
embed = uniqued(
|
||||
(norm | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width * 4, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif char_embed:
|
||||
embed = concatenate_lists(
|
||||
CharacterEmbed(nM=64, nC=8),
|
||||
FeatureExtracter(cols) >> with_flatten(norm),
|
||||
)
|
||||
reduce_dimensions = LN(
|
||||
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
|
||||
)
|
||||
else:
|
||||
embed = norm
|
||||
cols = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||
|
||||
convolution = Residual(
|
||||
ExtractWindow(nW=1)
|
||||
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
||||
)
|
||||
if char_embed:
|
||||
tok2vec = embed >> with_flatten(
|
||||
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
else:
|
||||
tok2vec = FeatureExtracter(cols) >> with_flatten(
|
||||
embed >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
doc2feats_cfg = {"arch": "spacy.Doc2Feats.v1", "config": {"columns": cols}}
|
||||
if char_embed:
|
||||
embed_cfg = {
|
||||
"arch": "spacy.CharacterEmbed.v1",
|
||||
"config": {
|
||||
"width": 64,
|
||||
"chars": 6,
|
||||
"@mix": {
|
||||
"arch": "spacy.LayerNormalizedMaxout.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"pieces": 3
|
||||
}
|
||||
},
|
||||
"@embed_features": None
|
||||
}
|
||||
}
|
||||
else:
|
||||
embed_cfg = {
|
||||
"arch": "spacy.MultiHashEmbed.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"rows": embed_size,
|
||||
"columns": cols,
|
||||
"use_subwords": subword_features,
|
||||
"@pretrained_vectors": None,
|
||||
"@mix": {
|
||||
"arch": "spacy.LayerNormalizedMaxout.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"pieces": 3
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
if pretrained_vectors:
|
||||
embed_cfg["config"]["@pretrained_vectors"] = {
|
||||
"arch": "spacy.PretrainedVectors.v1",
|
||||
"config": {
|
||||
"vectors_name": pretrained_vectors,
|
||||
"width": width,
|
||||
"column": cols.index(ID)
|
||||
}
|
||||
}
|
||||
cnn_cfg = {
|
||||
"arch": "spacy.MaxoutWindowEncoder.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"window_size": 1,
|
||||
"pieces": cnn_maxout_pieces,
|
||||
"depth": conv_depth
|
||||
}
|
||||
}
|
||||
|
||||
if bilstm_depth >= 1:
|
||||
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
|
||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||
tok2vec.nO = width
|
||||
tok2vec.embed = embed
|
||||
return tok2vec
|
||||
bilstm_cfg = {
|
||||
"arch": "spacy.TorchBiLSTMEncoder.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"depth": bilstm_depth,
|
||||
}
|
||||
}
|
||||
if conv_depth == 0 and bilstm_depth == 0:
|
||||
encode_cfg = {}
|
||||
elif conv_depth >= 1 and bilstm_depth >= 1:
|
||||
encode_cfg = {
|
||||
"arch": "thinc.FeedForward.v1",
|
||||
"config": {
|
||||
"children": [cnn_cfg, bilstm_cfg]
|
||||
}
|
||||
}
|
||||
elif conv_depth >= 1:
|
||||
encode_cfg = cnn_cfg
|
||||
else:
|
||||
encode_cfg = bilstm_cfg
|
||||
config = {
|
||||
"@doc2feats": doc2feats_cfg,
|
||||
"@embed": embed_cfg,
|
||||
"@encode": encode_cfg
|
||||
}
|
||||
return new_ml.Tok2Vec(config)
|
||||
|
||||
|
||||
def reapply(layer, n_times):
|
||||
|
|
1
spacy/ml/__init__.py
Normal file
1
spacy/ml/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .tok2vec import Tok2Vec
|
42
spacy/ml/_wire.py
Normal file
42
spacy/ml/_wire.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
from __future__ import unicode_literals
|
||||
from thinc.api import layerize, wrap, noop, chain, concatenate
|
||||
from thinc.v2v import Model
|
||||
|
||||
|
||||
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
||||
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
||||
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
||||
"""
|
||||
if not layers:
|
||||
return layerize(noop())
|
||||
drop_factor = kwargs.get("drop_factor", 1.0)
|
||||
ops = layers[0].ops
|
||||
layers = [chain(layer, flatten) for layer in layers]
|
||||
concat = concatenate(*layers)
|
||||
|
||||
def concatenate_lists_fwd(Xs, drop=0.0):
|
||||
if drop is not None:
|
||||
drop *= drop_factor
|
||||
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
||||
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
||||
ys = ops.unflatten(flat_y, lengths)
|
||||
|
||||
def concatenate_lists_bwd(d_ys, sgd=None):
|
||||
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
||||
|
||||
return ys, concatenate_lists_bwd
|
||||
|
||||
model = wrap(concatenate_lists_fwd, concat)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.0):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
||||
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=0)
|
||||
|
||||
X = ops.flatten(seqs, pad=0)
|
||||
return X, finish_update
|
22
spacy/ml/common.py
Normal file
22
spacy/ml/common.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from thinc.api import chain
|
||||
from thinc.v2v import Maxout
|
||||
from thinc.misc import LayerNorm
|
||||
from ..util import register_architecture, make_layer
|
||||
|
||||
|
||||
@register_architecture("thinc.FeedForward.v1")
|
||||
def FeedForward(config):
|
||||
layers = [make_layer(layer_cfg) for layer_cfg in config["layers"]]
|
||||
model = chain(*layers)
|
||||
model.cfg = config
|
||||
return model
|
||||
|
||||
@register_architecture("spacy.LayerNormalizedMaxout.v1")
|
||||
def LayerNormalizedMaxout(config):
|
||||
width = config["width"]
|
||||
pieces = config["pieces"]
|
||||
layer = chain(Maxout(width, pieces=pieces), LayerNorm(nO=width))
|
||||
layer.nO = width
|
||||
return layer
|
141
spacy/ml/tok2vec.py
Normal file
141
spacy/ml/tok2vec.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from thinc.api import chain, layerize, clone, concatenate, with_flatten, uniqued
|
||||
from thinc.api import noop, with_square_sequences
|
||||
from thinc.v2v import Maxout
|
||||
from thinc.i2v import HashEmbed, StaticVectors
|
||||
from thinc.t2t import ExtractWindow
|
||||
from thinc.misc import Residual, LayerNorm, FeatureExtracter
|
||||
|
||||
from ..util import make_layer, register_architecture
|
||||
from ._wire import concatenate_lists
|
||||
from .common import *
|
||||
|
||||
|
||||
@register_architecture("spacy.Tok2Vec.v1")
|
||||
def Tok2Vec(config):
|
||||
doc2feats = make_layer(config["@doc2feats"])
|
||||
embed = make_layer(config["@embed"])
|
||||
encode = make_layer(config["@encode"])
|
||||
tok2vec = chain(doc2feats, with_flatten(chain(embed, encode)))
|
||||
tok2vec.cfg = config
|
||||
tok2vec.nO = encode.nO
|
||||
tok2vec.embed = embed
|
||||
tok2vec.encode = encode
|
||||
return tok2vec
|
||||
|
||||
|
||||
@register_architecture("spacy.Doc2Feats.v1")
|
||||
def Doc2Feats(config):
|
||||
columns = config["columns"]
|
||||
return FeatureExtracter(columns)
|
||||
|
||||
|
||||
@register_architecture("spacy.MultiHashEmbed.v1")
|
||||
def MultiHashEmbed(config):
|
||||
cols = config["columns"]
|
||||
width = config["width"]
|
||||
rows = config["rows"]
|
||||
|
||||
tables = [HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm")]
|
||||
if config["use_subwords"]:
|
||||
for feature in ["PREFIX", "SUFFIX", "SHAPE"]:
|
||||
tables.append(
|
||||
HashEmbed(
|
||||
width,
|
||||
rows // 2,
|
||||
column=cols.index(feature),
|
||||
name="embed_%s" % feature.lower(),
|
||||
)
|
||||
)
|
||||
if config.get("@pretrained_vectors"):
|
||||
tables.append(make_layer(config["@pretrained_vectors"]))
|
||||
mix = make_layer(config["@mix"])
|
||||
# This is a pretty ugly hack. Not sure what the best solution should be.
|
||||
mix._layers[0].nI = sum(table.nO for table in tables)
|
||||
layer = uniqued(chain(concatenate(*tables), mix), column=cols.index("ORTH"))
|
||||
layer.cfg = config
|
||||
return layer
|
||||
|
||||
|
||||
@register_architecture("spacy.CharacterEmbed.v1")
|
||||
def CharacterEmbed(config):
|
||||
width = config["width"]
|
||||
chars = config["chars"]
|
||||
|
||||
chr_embed = CharacterEmbed(nM=width, nC=chars)
|
||||
other_tables = make_layer(config["@embed_features"])
|
||||
mix = make_layer(config["@mix"])
|
||||
|
||||
model = chain(concatenate_lists(chr_embed, other_tables), mix)
|
||||
model.cfg = config
|
||||
return model
|
||||
|
||||
|
||||
@register_architecture("spacy.MaxoutWindowEncoder.v1")
|
||||
def MaxoutWindowEncoder(config):
|
||||
nO = config["width"]
|
||||
nW = config["window_size"]
|
||||
nP = config["pieces"]
|
||||
depth = config["depth"]
|
||||
|
||||
cnn = chain(
|
||||
ExtractWindow(nW=nW),
|
||||
Maxout(nO, nO * ((nW * 2) + 1), pieces=nP),
|
||||
LayerNorm(nO=nO),
|
||||
)
|
||||
model = clone(Residual(cnn), depth)
|
||||
model.nO = nO
|
||||
return model
|
||||
|
||||
|
||||
@register_architecture("spacy.PretrainedVectors.v1")
|
||||
def PretrainedVectors(config):
|
||||
return StaticVectors(config["vectors_name"], config["width"], config["column"])
|
||||
|
||||
|
||||
@register_architecture("spacy.TorchBiLSTMEncoder.v1")
|
||||
def TorchBiLSTMEncoder(config):
|
||||
import torch.nn
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
|
||||
width = config["width"]
|
||||
depth = config["depth"]
|
||||
if depth == 0:
|
||||
return layerize(noop())
|
||||
return with_square_sequences(
|
||||
PyTorchWrapperRNN(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
||||
)
|
||||
|
||||
|
||||
_EXAMPLE_CONFIG = {
|
||||
"@doc2feats": {
|
||||
"arch": "Doc2Feats",
|
||||
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
|
||||
},
|
||||
"@embed": {
|
||||
"arch": "spacy.MultiHashEmbed.v1",
|
||||
"config": {
|
||||
"width": 96,
|
||||
"rows": 2000,
|
||||
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
|
||||
"use_subwords": True,
|
||||
"@pretrained_vectors": {
|
||||
"arch": "TransformedStaticVectors",
|
||||
"config": {
|
||||
"vectors_name": "en_vectors_web_lg.vectors",
|
||||
"width": 96,
|
||||
"column": 0,
|
||||
},
|
||||
},
|
||||
"@mix": {
|
||||
"arch": "LayerNormalizedMaxout",
|
||||
"config": {"width": 96, "pieces": 3},
|
||||
},
|
||||
},
|
||||
},
|
||||
"@encode": {
|
||||
"arch": "MaxoutWindowEncode",
|
||||
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
|
||||
},
|
||||
}
|
|
@ -142,6 +142,11 @@ def register_architecture(name, arch=None):
|
|||
return do_registration
|
||||
|
||||
|
||||
def make_layer(arch_config):
|
||||
arch_func = get_architecture(arch_config["arch"])
|
||||
return arch_func(arch_config["config"])
|
||||
|
||||
|
||||
def get_architecture(name):
|
||||
"""Get a model architecture function by name. Raises a KeyError if the
|
||||
architecture is not found.
|
||||
|
|
Loading…
Reference in New Issue
Block a user