* Remove deprecated _ml.pyx. We now use the nicer APIs provided by thinc 4.0, and subclass the AveragedPerceptron class.

This commit is contained in:
Matthew Honnibal 2015-11-07 05:13:10 +11:00
parent 3c162dcac3
commit 410b6f9ec1
2 changed files with 0 additions and 94 deletions

View File

@ -1,26 +0,0 @@
from libc.stdint cimport uint8_t
from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor, Feature
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
from thinc.api cimport Example, ExampleC
from preshed.maps cimport PreshMapArray
from .typedefs cimport hash_t
cdef class Model:
cdef readonly int n_classes
cdef readonly int n_feats
cdef const weight_t* score(self, atom_t* context) except NULL
cdef int set_scores(self, weight_t* scores, atom_t* context) nogil
cdef object model_loc
cdef object _templates
cdef Extractor _extractor
cdef Example _eg
cdef LinearModel _model

View File

@ -1,68 +0,0 @@
# cython: profile=True
from __future__ import unicode_literals
from __future__ import division
from os import path
import tempfile
import os
import shutil
import json
import cython
import numpy.random
from libc.string cimport memcpy
from thinc.features cimport Feature, count_feats
from thinc.api cimport Example
from thinc.learner cimport arg_max, arg_max_if_true, arg_max_if_zero
cdef class Model:
def __init__(self, n_classes, templates, model_loc=None):
if model_loc is not None and path.isdir(model_loc):
model_loc = path.join(model_loc, 'model')
self._templates = templates
n_atoms = max([max(templ) for templ in templates]) + 1
self.n_classes = n_classes
self._extractor = Extractor(templates)
self.n_feats = self._extractor.n_templ
self._model = LinearModel(n_classes, self._extractor)
self._eg = Example(n_classes, n_atoms, self._extractor.n_templ, self._extractor.n_templ)
self.model_loc = model_loc
if self.model_loc and path.exists(self.model_loc):
self._model.load(self.model_loc, freq_thresh=0)
def __reduce__(self):
_, model_loc = tempfile.mkstemp()
# TODO: This is a potentially buggy implementation. We're not really
# given a good guarantee that all internal state is saved correctly here,
# since there are learning parameters for e.g. the model averaging in
# averaged perceptron, the gradient calculations in AdaGrad, etc
# that aren't necessarily saved. So, if we're part way through training
# the model, and then we pickle it, we won't recover the state correctly.
self._model.dump(model_loc)
return (Model, (self.n_classes, self._templates, model_loc),
None, None)
def predict(self, Example eg):
self._model(eg)
def train(self, Example eg):
self._model.train(eg)
cdef const weight_t* score(self, atom_t* context) except NULL:
memcpy(self._eg.c.atoms, context, self._eg.c.nr_atom * sizeof(context[0]))
self._model(self._eg)
return self._eg.c.scores
cdef int set_scores(self, weight_t* scores, atom_t* context) nogil:
cdef int nr_feat = self._extractor.set_feats(self._eg.c.features, context)
self._model.set_scores(scores, self._eg.c.features, nr_feat)
def end_training(self, model_loc=None):
if model_loc is None:
model_loc = self.model_loc
self._model.end_training()
self._model.dump(model_loc, freq_thresh=0)