diff --git a/.appveyor.yml b/.appveyor.yml index 12399a5a1..a379cdd31 100644 --- a/.appveyor.yml +++ b/.appveyor.yml @@ -24,7 +24,6 @@ install: - "%PYTHON%\\python.exe -m pip install wheel" - "%PYTHON%\\python.exe -m pip install cython" - "%PYTHON%\\python.exe -m pip install -r requirements.txt" - - "%PYTHON%\\python.exe setup.py build_ext --inplace" - "%PYTHON%\\python.exe -m pip install -e ." build: off diff --git a/requirements.txt b/requirements.txt index 5d515f7a1..225d1fb31 100644 --- a/requirements.txt +++ b/requirements.txt @@ -16,3 +16,4 @@ pytest>=3.0.6,<4.0.0 mock>=2.0.0,<3.0.0 msgpack-python msgpack-numpy +html5lib==1.0b8 diff --git a/spacy/_ml.py b/spacy/_ml.py index 34f66233d..2e95aa55b 100644 --- a/spacy/_ml.py +++ b/spacy/_ml.py @@ -240,7 +240,6 @@ def link_vectors_to_models(vocab): # (unideal, I know) thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data - def Tok2Vec(width, embed_size, **kwargs): pretrained_dims = kwargs.get('pretrained_dims', 0) cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3) @@ -271,7 +270,7 @@ def Tok2Vec(width, embed_size, **kwargs): tok2vec = ( FeatureExtracter(cols) >> with_flatten( - embed >> (convolution * 4), pad=4) + embed >> (convolution ** 4), pad=4) ) # Work around thinc API limitations :(. TODO: Revise in Thinc 7 @@ -513,17 +512,17 @@ def build_tagger_model(nr_class, **cfg): token_vector_width = util.env_opt('token_vector_width', 128) pretrained_dims = cfg.get('pretrained_dims', 0) with Model.define_operators({'>>': chain, '+': add}): - # Input: (doc, tensor) tuples - private_tok2vec = Tok2Vec(token_vector_width, embed_size, - pretrained_dims=pretrained_dims) + if 'tok2vec' in cfg: + tok2vec = cfg['tok2vec'] + else: + tok2vec = Tok2Vec(token_vector_width, embed_size, + pretrained_dims=pretrained_dims) model = ( - fine_tune(private_tok2vec) - >> with_flatten( - Maxout(token_vector_width, token_vector_width) - >> Softmax(nr_class, token_vector_width) - ) + tok2vec + >> with_flatten(Softmax(nr_class, token_vector_width)) ) model.nI = None + model.tok2vec = tok2vec return model diff --git a/spacy/about.py b/spacy/about.py index 40444ffd1..0ae019946 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -3,12 +3,13 @@ # https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py __title__ = 'spacy-nightly' -__version__ = '2.0.0a14' +__version__ = '2.0.0a15' __summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython' __uri__ = 'https://spacy.io' __author__ = 'Explosion AI' __email__ = 'contact@explosion.ai' __license__ = 'MIT' +__release__ = False __docs_models__ = 'https://spacy.io/docs/usage/models' __download_url__ = 'https://github.com/explosion/spacy-models/releases/download' diff --git a/spacy/cli/train.py b/spacy/cli/train.py index d71523a9c..6178ecb3b 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -11,6 +11,8 @@ import tqdm from thinc.neural._classes.model import Model from thinc.neural.optimizers import linear_decay from timeit import default_timer as timer +import random +import numpy.random from ..tokens.doc import Doc from ..scorer import Scorer @@ -22,6 +24,9 @@ from .. import about from .. import displacy from ..compat import json_dumps +random.seed(0) +numpy.random.seed(0) + @plac.annotations( lang=("model language", "positional", None, str), @@ -63,7 +68,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, prints("Expected dict but got: {}".format(type(meta)), title="Not a valid meta.json format", exits=1) - pipeline = ['token_vectors', 'tags', 'dependencies', 'entities'] + pipeline = ['tags', 'dependencies', 'entities'] if no_tagger and 'tags' in pipeline: pipeline.remove('tags') if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies') if no_entities and 'entities' in pipeline: pipeline.remove('entities') @@ -99,8 +104,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, for batch in minibatch(train_docs, size=batch_sizes): docs, golds = zip(*batch) nlp.update(docs, golds, sgd=optimizer, - drop=next(dropout_rates), losses=losses, - update_shared=True) + drop=next(dropout_rates), losses=losses) pbar.update(sum(len(doc) for doc in docs)) with nlp.use_params(optimizer.averages): @@ -109,10 +113,13 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, nlp.to_disk(epoch_model_path) nlp_loaded = lang_class(pipeline=pipeline) nlp_loaded = nlp_loaded.from_disk(epoch_model_path) - scorer = nlp.evaluate( - corpus.dev_docs( - nlp, - gold_preproc=gold_preproc)) + scorer = nlp_loaded.evaluate( + list(corpus.dev_docs( + nlp_loaded, + gold_preproc=gold_preproc))) + acc_loc =(output_path / ('model%d' % i) / 'accuracy.json') + with acc_loc.open('w') as file_: + file_.write(json_dumps(scorer.scores)) meta_loc = output_path / ('model%d' % i) / 'meta.json' meta['accuracy'] = scorer.scores meta['lang'] = nlp.lang diff --git a/spacy/lang/char_classes.py b/spacy/lang/char_classes.py index 0698cfd43..b10481411 100644 --- a/spacy/lang/char_classes.py +++ b/spacy/lang/char_classes.py @@ -29,9 +29,9 @@ _units = ('km km² km³ m m² m³ dm dm² dm³ cm cm² cm³ mm mm² mm³ ha µm 'kg g mg µg t lb oz m/s km/h kmh mph hPa Pa mbar mb MB kb KB gb GB tb ' 'TB T G M K %') _currency = r'\$ £ € ¥ ฿ US\$ C\$ A\$' -_punct = r'… , : ; \! \? ¿ ¡ \( \) \[ \] \{ \} < > _ # \* &' +_punct = r'… …… , : ; \! \? ¿ ¡ \( \) \[ \] \{ \} < > _ # \* & 。 ? ! , 、 ; : ~ ·' _quotes = r'\' \'\' " ” “ `` ` ‘ ´ ‚ , „ » «' -_hyphens = '- – — -- ---' +_hyphens = '- – — -- --- —— ~' _other_symbols = r'[\p{So}]' UNITS = merge_chars(_units) diff --git a/spacy/lang/fr/__init__.py b/spacy/lang/fr/__init__.py index a243b6268..06dcf2d45 100644 --- a/spacy/lang/fr/__init__.py +++ b/spacy/lang/fr/__init__.py @@ -4,6 +4,7 @@ from __future__ import unicode_literals from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS, TOKEN_MATCH from .punctuation import TOKENIZER_SUFFIXES, TOKENIZER_INFIXES from .stop_words import STOP_WORDS +from .lex_attrs import LEX_ATTRS from .lemmatizer import LOOKUP from .syntax_iterators import SYNTAX_ITERATORS @@ -17,6 +18,7 @@ from ...util import update_exc, add_lookups class FrenchDefaults(Language.Defaults): lex_attr_getters = dict(Language.Defaults.lex_attr_getters) + lex_attr_getters.update(LEX_ATTRS) lex_attr_getters[LANG] = lambda text: 'fr' lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS) diff --git a/spacy/lang/fr/lex_attrs.py b/spacy/lang/fr/lex_attrs.py new file mode 100644 index 000000000..41c509dff --- /dev/null +++ b/spacy/lang/fr/lex_attrs.py @@ -0,0 +1,41 @@ +# coding: utf8 +from __future__ import unicode_literals + +from ...attrs import LIKE_NUM + + +_num_words = set(""" +zero un deux trois quatre cinq six sept huit neuf dix +onze douze treize quatorze quinze seize dix-sept dix-huit dix-neuf +vingt trente quanrante cinquante soixante septante quatre-vingt huitante nonante +cent mille mil million milliard billion quadrillion quintillion +sextillion septillion octillion nonillion decillion +""".split()) + +_ordinal_words = set(""" +premier deuxième second troisième quatrième cinquième sixième septième huitième neuvième dixième +onzième douzième treizième quatorzième quinzième seizième dix-septième dix-huitième dix-neufième +vingtième trentième quanrantième cinquantième soixantième septantième quatre-vingtième huitantième nonantième +centième millième millionnième milliardième billionnième quadrillionnième quintillionnième +sextillionnième septillionnième octillionnième nonillionnième decillionnième +""".split()) + + +def like_num(text): + # Might require more work? + # See this discussion: https://github.com/explosion/spaCy/pull/1161 + text = text.replace(',', '').replace('.', '') + if text.isdigit(): + return True + if text.count('/') == 1: + num, denom = text.split('/') + if num.isdigit() and denom.isdigit(): + return True + if text in _num_words: + return True + return False + + +LEX_ATTRS = { + LIKE_NUM: like_num +} diff --git a/spacy/lang/nl/__init__.py b/spacy/lang/nl/__init__.py index 7b948f295..98df8d487 100644 --- a/spacy/lang/nl/__init__.py +++ b/spacy/lang/nl/__init__.py @@ -2,6 +2,7 @@ from __future__ import unicode_literals from .stop_words import STOP_WORDS +from .lex_attrs import LEX_ATTRS from ..tokenizer_exceptions import BASE_EXCEPTIONS from ..norm_exceptions import BASE_NORMS @@ -12,6 +13,7 @@ from ...util import update_exc, add_lookups class DutchDefaults(Language.Defaults): lex_attr_getters = dict(Language.Defaults.lex_attr_getters) + lex_attr_getters.update(LEX_ATTRS) lex_attr_getters[LANG] = lambda text: 'nl' lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS) diff --git a/spacy/lang/nl/lex_attrs.py b/spacy/lang/nl/lex_attrs.py new file mode 100644 index 000000000..08b1df3be --- /dev/null +++ b/spacy/lang/nl/lex_attrs.py @@ -0,0 +1,40 @@ +# coding: utf8 +from __future__ import unicode_literals + +from ...attrs import LIKE_NUM + + +_num_words = set(""" +nul een één twee drie vier vijf zes zeven acht negen tien elf twaalf dertien +veertien twintig dertig veertig vijftig zestig zeventig tachtig negentig honderd +duizend miljoen miljard biljoen biljard triljoen triljard +""".split()) + +_ordinal_words = set(""" +eerste tweede derde vierde vijfde zesde zevende achtste negende tiende elfde +twaalfde dertiende veertiende twintigste dertigste veertigste vijftigste +zestigste zeventigste tachtigste negentigste honderdste duizendste miljoenste +miljardste biljoenste biljardste triljoenste triljardste +""".split()) + + +def like_num(text): + # This only does the most basic check for whether a token is a digit + # or matches one of the number words. In order to handle numbers like + # "drieëntwintig", more work is required. + # See this discussion: https://github.com/explosion/spaCy/pull/1177 + text = text.replace(',', '').replace('.', '') + if text.isdigit(): + return True + if text.count('/') == 1: + num, denom = text.split('/') + if num.isdigit() and denom.isdigit(): + return True + if text in _num_words: + return True + return False + + +LEX_ATTRS = { + LIKE_NUM: like_num +} diff --git a/spacy/language.py b/spacy/language.py index 130d7989d..701b5c140 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -34,6 +34,7 @@ from .lang.tag_map import TAG_MAP from .lang.lex_attrs import LEX_ATTRS from . import util from .scorer import Scorer +from ._ml import link_vectors_to_models class BaseDefaults(object): @@ -278,8 +279,7 @@ class Language(object): def make_doc(self, text): return self.tokenizer(text) - def update(self, docs, golds, drop=0., sgd=None, losses=None, - update_shared=False): + def update(self, docs, golds, drop=0., sgd=None, losses=None): """Update the models in the pipeline. docs (iterable): A batch of `Doc` objects. @@ -303,31 +303,17 @@ class Language(object): if self._optimizer is None: self._optimizer = Adam(Model.ops, 0.001) sgd = self._optimizer - tok2vec = self.pipeline[0] grads = {} def get_grads(W, dW, key=None): grads[key] = (W, dW) - pipes = list(self.pipeline[1:]) + pipes = list(self.pipeline) random.shuffle(pipes) - tokvecses, bp_tokvecses = tok2vec.model.begin_update(docs, drop=drop) - all_d_tokvecses = [tok2vec.model.ops.allocate(tv.shape) for tv in tokvecses] for proc in pipes: if not hasattr(proc, 'update'): continue - d_tokvecses = proc.update((docs, tokvecses), golds, - drop=drop, sgd=get_grads, losses=losses) - if update_shared and d_tokvecses is not None: - for i, d_tv in enumerate(d_tokvecses): - all_d_tokvecses[i] += d_tv - if update_shared and bp_tokvecses is not None: - bp_tokvecses(all_d_tokvecses, sgd=sgd) + proc.update(docs, golds, drop=drop, sgd=get_grads, losses=losses) for key, (W, dW) in grads.items(): sgd(W, dW, key=key) - # Clear the tensor variable, to free GPU memory. - # If we don't do this, the memory leak gets pretty - # bad, because we may be holding part of a batch. - for doc in docs: - doc.tensor = None def preprocess_gold(self, docs_golds): """Can be called before training to pre-process gold data. By default, @@ -370,8 +356,6 @@ class Language(object): **cfg: Config parameters. returns: An optimizer """ - if self.parser: - self.pipeline.append(NeuralLabeller(self.vocab)) # Populate vocab if get_gold_tuples is not None: for _, annots_brackets in get_gold_tuples(): @@ -386,6 +370,7 @@ class Language(object): self.vocab.vectors.data) else: device = None + link_vectors_to_models(self.vocab) for proc in self.pipeline: if hasattr(proc, 'begin_training'): context = proc.begin_training(get_gold_tuples(), @@ -417,7 +402,6 @@ class Language(object): assert len(docs) == len(golds) for doc, gold in zip(docs, golds): scorer.score(doc, gold) - doc.tensor = None return scorer @contextmanager @@ -506,7 +490,6 @@ class Language(object): """ path = util.ensure_path(path) serializers = OrderedDict(( - ('vocab', lambda p: self.vocab.to_disk(p)), ('tokenizer', lambda p: self.tokenizer.to_disk(p, vocab=False)), ('meta.json', lambda p: p.open('w').write(json_dumps(self.meta))) )) @@ -518,6 +501,7 @@ class Language(object): if not hasattr(proc, 'to_disk'): continue serializers[proc.name] = lambda p, proc=proc: proc.to_disk(p, vocab=False) + serializers['vocab'] = lambda p: self.vocab.to_disk(p) util.to_disk(path, serializers, {p: False for p in disable}) def from_disk(self, path, disable=tuple()): diff --git a/spacy/morphology.pyx b/spacy/morphology.pyx index 13a0ed8e3..5ee11c151 100644 --- a/spacy/morphology.pyx +++ b/spacy/morphology.pyx @@ -146,6 +146,8 @@ cdef class Morphology: self.add_special_case(tag_str, form_str, attrs) def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology): + if orth not in self.strings: + return orth cdef unicode py_string = self.strings[orth] if self.lemmatizer is None: return self.strings.add(py_string.lower()) diff --git a/spacy/pipeline.pyx b/spacy/pipeline.pyx index 90ff1ad88..717a1bd3f 100644 --- a/spacy/pipeline.pyx +++ b/spacy/pipeline.pyx @@ -174,7 +174,7 @@ class BaseThincComponent(object): deserialize = OrderedDict(( ('cfg', lambda b: self.cfg.update(ujson.loads(b))), - ('vocab', lambda b: self.vocab.from_bytes(b)) + ('vocab', lambda b: self.vocab.from_bytes(b)), ('model', load_model), )) util.from_bytes(bytes_data, deserialize, exclude) @@ -322,7 +322,7 @@ class TokenVectorEncoder(BaseThincComponent): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) - link_vectors_to_models(self.vocab) + link_vectors_to_models(self.vocab) class NeuralTagger(BaseThincComponent): @@ -335,27 +335,25 @@ class NeuralTagger(BaseThincComponent): self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) def __call__(self, doc): - tags = self.predict(([doc], [doc.tensor])) + tags = self.predict([doc]) self.set_annotations([doc], tags) return doc def pipe(self, stream, batch_size=128, n_threads=-1): for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) - tokvecs = [d.tensor for d in docs] - tag_ids = self.predict((docs, tokvecs)) + tag_ids = self.predict(docs) self.set_annotations(docs, tag_ids) yield from docs - def predict(self, docs_tokvecs): - scores = self.model(docs_tokvecs) + def predict(self, docs): + scores = self.model(docs) scores = self.model.ops.flatten(scores) guesses = scores.argmax(axis=1) if not isinstance(guesses, numpy.ndarray): guesses = guesses.get() - tokvecs = docs_tokvecs[1] guesses = self.model.ops.unflatten(guesses, - [tv.shape[0] for tv in tokvecs]) + [len(d) for d in docs]) return guesses def set_annotations(self, docs, batch_tag_ids): @@ -375,20 +373,16 @@ class NeuralTagger(BaseThincComponent): idx += 1 doc.is_tagged = True - def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None): + def update(self, docs, golds, drop=0., sgd=None, losses=None): if losses is not None and self.name not in losses: losses[self.name] = 0. - docs, tokvecs = docs_tokvecs - if self.model.nI is None: - self.model.nI = tokvecs[0].shape[1] - tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop) + tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop) loss, d_tag_scores = self.get_loss(docs, golds, tag_scores) + bp_tag_scores(d_tag_scores, sgd=sgd) - d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd) if losses is not None: losses[self.name] += loss - return d_tokvecs def get_loss(self, docs, golds, scores): scores = self.model.ops.flatten(scores) @@ -432,7 +426,7 @@ class NeuralTagger(BaseThincComponent): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg) - link_vectors_to_models(self.vocab) + link_vectors_to_models(self.vocab) @classmethod def Model(cls, n_tags, **cfg): @@ -514,9 +508,25 @@ class NeuralTagger(BaseThincComponent): class NeuralLabeller(NeuralTagger): name = 'nn_labeller' - def __init__(self, vocab, model=True, **cfg): + def __init__(self, vocab, model=True, target='dep_tag_offset', **cfg): self.vocab = vocab self.model = model + if target == 'dep': + self.make_label = self.make_dep + elif target == 'tag': + self.make_label = self.make_tag + elif target == 'ent': + self.make_label = self.make_ent + elif target == 'dep_tag_offset': + self.make_label = self.make_dep_tag_offset + elif target == 'ent_tag': + self.make_label = self.make_ent_tag + elif hasattr(target, '__call__'): + self.make_label = target + else: + raise ValueError( + "NeuralLabeller target should be function or one of " + "['dep', 'tag', 'ent', 'dep_tag_offset', 'ent_tag']") self.cfg = dict(cfg) self.cfg.setdefault('cnn_maxout_pieces', 2) self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1]) @@ -532,43 +542,78 @@ class NeuralLabeller(NeuralTagger): def set_annotations(self, docs, dep_ids): pass - def begin_training(self, gold_tuples=tuple(), pipeline=None): + def begin_training(self, gold_tuples=tuple(), pipeline=None, tok2vec=None): gold_tuples = nonproj.preprocess_training_data(gold_tuples) for raw_text, annots_brackets in gold_tuples: for annots, brackets in annots_brackets: ids, words, tags, heads, deps, ents = annots - for dep in deps: - if dep not in self.labels: - self.labels[dep] = len(self.labels) - token_vector_width = pipeline[0].model.nO + for i in range(len(ids)): + label = self.make_label(i, words, tags, heads, deps, ents) + if label is not None and label not in self.labels: + self.labels[label] = len(self.labels) + print(len(self.labels)) if self.model is True: - self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] - self.model = self.Model(len(self.labels), **self.cfg) - link_vectors_to_models(self.vocab) + self.model = chain( + tok2vec, + Softmax(len(self.labels), 128) + ) + link_vectors_to_models(self.vocab) @classmethod - def Model(cls, n_tags, **cfg): - return build_tagger_model(n_tags, **cfg) + def Model(cls, n_tags, tok2vec=None, **cfg): + return build_tagger_model(n_tags, tok2vec=tok2vec, **cfg) def get_loss(self, docs, golds, scores): - scores = self.model.ops.flatten(scores) cdef int idx = 0 correct = numpy.zeros((scores.shape[0],), dtype='i') guesses = scores.argmax(axis=1) for gold in golds: - for tag in gold.labels: - if tag is None or tag not in self.labels: + for i in range(len(gold.labels)): + label = self.make_label(i, gold.words, gold.tags, gold.heads, + gold.labels, gold.ents) + if label is None or label not in self.labels: correct[idx] = guesses[idx] else: - correct[idx] = self.labels[tag] + correct[idx] = self.labels[label] idx += 1 correct = self.model.ops.xp.array(correct, dtype='i') d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1]) d_scores /= d_scores.shape[0] loss = (d_scores**2).sum() - d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs]) return float(loss), d_scores + @staticmethod + def make_dep(i, words, tags, heads, deps, ents): + if deps[i] is None or heads[i] is None: + return None + return deps[i] + + @staticmethod + def make_tag(i, words, tags, heads, deps, ents): + return tags[i] + + @staticmethod + def make_ent(i, words, tags, heads, deps, ents): + if ents is None: + return None + return ents[i] + + @staticmethod + def make_dep_tag_offset(i, words, tags, heads, deps, ents): + if deps[i] is None or heads[i] is None: + return None + offset = heads[i] - i + offset = min(offset, 2) + offset = max(offset, -2) + return '%s-%s:%d' % (deps[i], tags[i], offset) + + @staticmethod + def make_ent_tag(i, words, tags, heads, deps, ents): + if ents is None or ents[i] is None: + return None + else: + return '%s-%s' % (tags[i], ents[i]) + class SimilarityHook(BaseThincComponent): """ @@ -605,15 +650,10 @@ class SimilarityHook(BaseThincComponent): yield self(doc) def predict(self, doc1, doc2): - return self.model.predict([(doc1.tensor, doc2.tensor)]) + return self.model.predict([(doc1, doc2)]) - def update(self, doc1_tensor1_doc2_tensor2, golds, sgd=None, drop=0.): - doc1s, tensor1s, doc2s, tensor2s = doc1_tensor1_doc2_tensor2 - sims, bp_sims = self.model.begin_update(zip(tensor1s, tensor2s), - drop=drop) - d_tensor1s, d_tensor2s = bp_sims(golds, sgd=sgd) - - return d_tensor1s, d_tensor2s + def update(self, doc1_doc2, golds, sgd=None, drop=0.): + sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop) def begin_training(self, _=tuple(), pipeline=None): """ @@ -669,15 +709,13 @@ class TextCategorizer(BaseThincComponent): for j, label in enumerate(self.labels): doc.cats[label] = float(scores[i, j]) - def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None): - docs, tensors = docs_tensors + def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None): scores, bp_scores = self.model.begin_update(docs, drop=drop) loss, d_scores = self.get_loss(docs, golds, scores) - d_tensors = bp_scores(d_scores, sgd=sgd) + bp_scores(d_scores, sgd=sgd) if losses is not None: losses.setdefault(self.name, 0.0) losses[self.name] += loss - return d_tensors def get_loss(self, docs, golds, scores): truths = numpy.zeros((len(golds), len(self.labels)), dtype='f') @@ -739,6 +777,14 @@ cdef class NeuralDependencyParser(NeuralParser): name = 'parser' TransitionSystem = ArcEager + def init_multitask_objectives(self, gold_tuples, pipeline, **cfg): + for target in ['dep', 'ent']: + labeller = NeuralLabeller(self.vocab, target=target) + tok2vec = self.model[0] + labeller.begin_training(gold_tuples, pipeline=pipeline, tok2vec=tok2vec) + pipeline.append(labeller) + self._multitasks.append(labeller) + def __reduce__(self): return (NeuralDependencyParser, (self.vocab, self.moves, self.model), None, None) @@ -749,13 +795,13 @@ cdef class NeuralEntityRecognizer(NeuralParser): nr_feature = 6 - def predict_confidences(self, docs): - tensors = [d.tensor for d in docs] - samples = [] - for i in range(10): - states = self.parse_batch(docs, tensors, drop=0.3) - for state in states: - samples.append(self._get_entities(state)) + def init_multitask_objectives(self, gold_tuples, pipeline, **cfg): + for target in []: + labeller = NeuralLabeller(self.vocab, target=target) + tok2vec = self.model[0] + labeller.begin_training(gold_tuples, pipeline=pipeline, tok2vec=tok2vec) + pipeline.append(labeller) + self._multitasks.append(labeller) def __reduce__(self): return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None) diff --git a/spacy/syntax/_beam_utils.pyx b/spacy/syntax/_beam_utils.pyx index 4d90fe23b..a26900f6b 100644 --- a/spacy/syntax/_beam_utils.pyx +++ b/spacy/syntax/_beam_utils.pyx @@ -147,10 +147,10 @@ def get_token_ids(states, int n_tokens): nr_update = 0 def update_beam(TransitionSystem moves, int nr_feature, int max_steps, - states, tokvecs, golds, + states, golds, state2vec, vec2scores, int width, float density, - sgd=None, losses=None, drop=0.): + losses=None, drop=0.): global nr_update cdef MaxViolation violn nr_update += 1 diff --git a/spacy/syntax/nn_parser.pxd b/spacy/syntax/nn_parser.pxd index 524718965..b0b7693b7 100644 --- a/spacy/syntax/nn_parser.pxd +++ b/spacy/syntax/nn_parser.pxd @@ -13,6 +13,7 @@ cdef class Parser: cdef public object model cdef readonly TransitionSystem moves cdef readonly object cfg + cdef public object _multitasks cdef void _parse_step(self, StateC* state, const float* feat_weights, diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index 010b3771e..99099cad8 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -7,6 +7,7 @@ from __future__ import unicode_literals, print_function from collections import Counter, OrderedDict import ujson +import json import contextlib from libc.math cimport exp @@ -48,7 +49,7 @@ from .. import util from ..util import get_async, get_cuda_stream from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune -from .._ml import Residual, drop_layer +from .._ml import Residual, drop_layer, flatten from .._ml import link_vectors_to_models from ..compat import json_dumps @@ -245,8 +246,9 @@ cdef class Parser: hidden_width = util.env_opt('hidden_width', hidden_width) parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2) embed_size = util.env_opt('embed_size', 4000) - tensors = fine_tune(Tok2Vec(token_vector_width, embed_size, - pretrained_dims=cfg.get('pretrained_dims'))) + tok2vec = Tok2Vec(token_vector_width, embed_size, + pretrained_dims=cfg.get('pretrained_dims', 0)) + tok2vec = chain(tok2vec, flatten) if parser_maxout_pieces == 1: lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class, nF=cls.nr_feature, @@ -278,7 +280,7 @@ cdef class Parser: 'hidden_width': hidden_width, 'maxout_pieces': parser_maxout_pieces } - return (tensors, lower, upper), cfg + return (tok2vec, lower, upper), cfg def __init__(self, Vocab vocab, moves=True, model=True, **cfg): """ @@ -317,6 +319,7 @@ cdef class Parser: for label in labels: self.moves.add_action(action, label) self.model = model + self._multitasks = [] def __reduce__(self): return (Parser, (self.vocab, self.moves, self.model), None, None) @@ -336,11 +339,11 @@ cdef class Parser: beam_density = self.cfg.get('beam_density', 0.0) cdef Beam beam if beam_width == 1: - states = self.parse_batch([doc], [doc.tensor]) + states = self.parse_batch([doc]) self.set_annotations([doc], states) return doc else: - beam = self.beam_parse([doc], [doc.tensor], + beam = self.beam_parse([doc], beam_width=beam_width, beam_density=beam_density)[0] output = self.moves.get_beam_annot(beam) state = beam.at(0) @@ -369,11 +372,11 @@ cdef class Parser: cdef Beam beam for docs in cytoolz.partition_all(batch_size, docs): docs = list(docs) - tokvecs = [doc.tensor for doc in docs] if beam_width == 1: - parse_states = self.parse_batch(docs, tokvecs) + parse_states = self.parse_batch(docs) + beams = [] else: - beams = self.beam_parse(docs, tokvecs, + beams = self.beam_parse(docs, beam_width=beam_width, beam_density=beam_density) parse_states = [] for beam in beams: @@ -381,7 +384,7 @@ cdef class Parser: self.set_annotations(docs, parse_states) yield from docs - def parse_batch(self, docs, tokvecses): + def parse_batch(self, docs): cdef: precompute_hiddens state2vec StateClass state @@ -392,21 +395,15 @@ cdef class Parser: int nr_class, nr_feat, nr_piece, nr_dim, nr_state if isinstance(docs, Doc): docs = [docs] - if isinstance(tokvecses, np.ndarray): - tokvecses = [tokvecses] - if USE_FINE_TUNE: - tokvecs = self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) - else: - tokvecs = self.model[0].ops.flatten(tokvecses) + cuda_stream = get_cuda_stream() + (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, + 0.0) + nr_state = len(docs) nr_class = self.moves.n_moves nr_dim = tokvecs.shape[1] nr_feat = self.nr_feature - - cuda_stream = get_cuda_stream() - state2vec, vec2scores = self.get_batch_model(nr_state, tokvecs, - cuda_stream, 0.0) nr_piece = state2vec.nP states = self.moves.init_batch(docs) @@ -422,21 +419,23 @@ cdef class Parser: c_token_ids = token_ids.data c_is_valid = is_valid.data cdef int has_hidden = not getattr(vec2scores, 'is_noop', False) + cdef int nr_step while not next_step.empty(): + nr_step = next_step.size() if not has_hidden: - for i in range( - next_step.size(), num_threads=6, nogil=True): + for i in cython.parallel.prange(nr_step, num_threads=6, + nogil=True): self._parse_step(next_step[i], feat_weights, nr_class, nr_feat, nr_piece) else: - for i in range(next_step.size()): + for i in range(nr_step): st = next_step[i] st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat) self.moves.set_valid(&c_is_valid[i*nr_class], st) vectors = state2vec(token_ids[:next_step.size()]) scores = vec2scores(vectors) c_scores = scores.data - for i in range(next_step.size()): + for i in range(nr_step): st = next_step[i] guess = arg_max_if_valid( &c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class) @@ -449,19 +448,15 @@ cdef class Parser: next_step.push_back(st) return states - def beam_parse(self, docs, tokvecses, int beam_width=3, float beam_density=0.001): + def beam_parse(self, docs, int beam_width=3, float beam_density=0.001): cdef Beam beam cdef np.ndarray scores cdef Doc doc cdef int nr_class = self.moves.n_moves cdef StateClass stcls, output - if USE_FINE_TUNE: - tokvecs = self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) - else: - tokvecs = self.model[0].ops.flatten(tokvecses) cuda_stream = get_cuda_stream() - state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs, - cuda_stream, 0.0) + (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, + 0.0) beams = [] cdef int offset = 0 cdef int j = 0 @@ -521,30 +516,24 @@ cdef class Parser: free(scores) free(token_ids) - def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None): + def update(self, docs, golds, drop=0., sgd=None, losses=None): if not any(self.moves.has_gold(gold) for gold in golds): return None if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() >= 0.5: - return self.update_beam(docs_tokvecs, golds, + return self.update_beam(docs, golds, self.cfg['beam_width'], self.cfg['beam_density'], drop=drop, sgd=sgd, losses=losses) if losses is not None and self.name not in losses: losses[self.name] = 0. - docs, tokvec_lists = docs_tokvecs if isinstance(docs, Doc) and isinstance(golds, GoldParse): docs = [docs] golds = [golds] - if USE_FINE_TUNE: - my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) - tokvecs = self.model[0].ops.flatten(my_tokvecs) - else: - tokvecs = self.model[0].ops.flatten(docs_tokvecs[1]) cuda_stream = get_cuda_stream() states, golds, max_steps = self._init_gold_batch(docs, golds) - state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, - 0.0) + (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, + 0.0) todo = [(s, g) for (s, g) in zip(states, golds) if not s.is_final() and g is not None] if not todo: @@ -588,13 +577,9 @@ cdef class Parser: if n_steps >= max_steps: break self._make_updates(d_tokvecs, - backprops, sgd, cuda_stream) - d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs]) - if USE_FINE_TUNE: - d_tokvecs = bp_my_tokvecs(d_tokvecs, sgd=sgd) - return d_tokvecs + bp_tokvecs, backprops, sgd, cuda_stream) - def update_beam(self, docs_tokvecs, golds, width=None, density=None, + def update_beam(self, docs, golds, width=None, density=None, drop=0., sgd=None, losses=None): if not any(self.moves.has_gold(gold) for gold in golds): return None @@ -606,26 +591,20 @@ cdef class Parser: density = self.cfg.get('beam_density', 0.0) if losses is not None and self.name not in losses: losses[self.name] = 0. - docs, tokvecs = docs_tokvecs lengths = [len(d) for d in docs] assert min(lengths) >= 1 - if USE_FINE_TUNE: - my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) - tokvecs = self.model[0].ops.flatten(my_tokvecs) - else: - tokvecs = self.model[0].ops.flatten(tokvecs) states = self.moves.init_batch(docs) for gold in golds: self.moves.preprocess_gold(gold) cuda_stream = get_cuda_stream() - state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0) + (tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, 0.0) states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500, - states, tokvecs, golds, + states, golds, state2vec, vec2scores, width, density, - sgd=sgd, drop=drop, losses=losses) + drop=drop, losses=losses) backprop_lower = [] cdef float batch_size = len(docs) for i, d_scores in enumerate(states_d_scores): @@ -643,20 +622,7 @@ cdef class Parser: else: backprop_lower.append((ids, d_vector, bp_vectors)) d_tokvecs = self.model[0].ops.allocate(tokvecs.shape) - self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream) - d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, lengths) - if USE_FINE_TUNE: - d_tokvecs = bp_my_tokvecs(d_tokvecs, sgd=sgd) - return d_tokvecs - - def _pad_tokvecs(self, tokvecs): - # Add a vector for missing values at the start of tokvecs - xp = get_array_module(tokvecs) - pad = xp.zeros((1, tokvecs.shape[1]), dtype=tokvecs.dtype) - return xp.vstack((pad, tokvecs)) - - def _unpad_tokvecs(self, d_tokvecs): - return d_tokvecs[1:] + self._make_updates(d_tokvecs, bp_tokvecs, backprop_lower, sgd, cuda_stream) def _init_gold_batch(self, whole_docs, whole_golds): """Make a square batch, of length equal to the shortest doc. A long @@ -694,7 +660,7 @@ cdef class Parser: max_moves = max(max_moves, len(oracle_actions)) return states, golds, max_moves - def _make_updates(self, d_tokvecs, backprops, sgd, cuda_stream=None): + def _make_updates(self, d_tokvecs, bp_tokvecs, backprops, sgd, cuda_stream=None): # Tells CUDA to block, so our async copies complete. if cuda_stream is not None: cuda_stream.synchronize() @@ -705,6 +671,7 @@ cdef class Parser: d_state_features *= mask.reshape(ids.shape + (1,)) self.model[0].ops.scatter_add(d_tokvecs, ids * mask, d_state_features) + bp_tokvecs(d_tokvecs, sgd=sgd) @property def move_names(self): @@ -714,11 +681,12 @@ cdef class Parser: names.append(name) return names - def get_batch_model(self, batch_size, tokvecs, stream, dropout): - _, lower, upper = self.model - state2vec = precompute_hiddens(batch_size, tokvecs, + def get_batch_model(self, docs, stream, dropout): + tok2vec, lower, upper = self.model + tokvecs, bp_tokvecs = tok2vec.begin_update(docs, drop=dropout) + state2vec = precompute_hiddens(len(docs), tokvecs, lower, stream, drop=dropout) - return state2vec, upper + return (tokvecs, bp_tokvecs), state2vec, upper nr_feature = 8 @@ -781,7 +749,7 @@ cdef class Parser: # order, or the model goes out of synch self.cfg.setdefault('extra_labels', []).append(label) - def begin_training(self, gold_tuples, **cfg): + def begin_training(self, gold_tuples, pipeline=None, **cfg): if 'model' in cfg: self.model = cfg['model'] gold_tuples = nonproj.preprocess_training_data(gold_tuples) @@ -792,9 +760,20 @@ cdef class Parser: if self.model is True: cfg['pretrained_dims'] = self.vocab.vectors_length self.model, cfg = self.Model(self.moves.n_moves, **cfg) + self.init_multitask_objectives(gold_tuples, pipeline, **cfg) link_vectors_to_models(self.vocab) self.cfg.update(cfg) + def init_multitask_objectives(self, gold_tuples, pipeline, **cfg): + '''Setup models for secondary objectives, to benefit from multi-task + learning. This method is intended to be overridden by subclasses. + + For instance, the dependency parser can benefit from sharing + an input representation with a label prediction model. These auxiliary + models are discarded after training. + ''' + pass + def preprocess_gold(self, docs_golds): for doc, gold in docs_golds: yield doc, gold @@ -853,7 +832,7 @@ cdef class Parser: ('upper_model', lambda: self.model[2].to_bytes()), ('vocab', lambda: self.vocab.to_bytes()), ('moves', lambda: self.moves.to_bytes(strings=False)), - ('cfg', lambda: ujson.dumps(self.cfg)) + ('cfg', lambda: json.dumps(self.cfg, indent=2, sort_keys=True)) )) if 'model' in exclude: exclude['tok2vec_model'] = True @@ -866,7 +845,7 @@ cdef class Parser: deserializers = OrderedDict(( ('vocab', lambda b: self.vocab.from_bytes(b)), ('moves', lambda b: self.moves.from_bytes(b, strings=False)), - ('cfg', lambda b: self.cfg.update(ujson.loads(b))), + ('cfg', lambda b: self.cfg.update(json.loads(b))), ('tok2vec_model', lambda b: None), ('lower_model', lambda b: None), ('upper_model', lambda b: None) diff --git a/spacy/tests/parser/test_neural_parser.py b/spacy/tests/parser/test_neural_parser.py index 29350b30a..8747b01ba 100644 --- a/spacy/tests/parser/test_neural_parser.py +++ b/spacy/tests/parser/test_neural_parser.py @@ -61,33 +61,22 @@ def test_predict_doc(parser, tok2vec, model, doc): parser(doc) -def test_update_doc(parser, tok2vec, model, doc, gold): +def test_update_doc(parser, model, doc, gold): parser.model = model - tokvecs, bp_tokvecs = tok2vec.begin_update([doc]) - d_tokvecs = parser.update(([doc], tokvecs), [gold]) - assert d_tokvecs[0].shape == tokvecs[0].shape def optimize(weights, gradient, key=None): weights -= 0.001 * gradient - bp_tokvecs(d_tokvecs, sgd=optimize) - assert d_tokvecs[0].sum() == 0. + parser.update([doc], [gold], sgd=optimize) -def test_predict_doc_beam(parser, tok2vec, model, doc): - doc.tensor = tok2vec([doc])[0] +def test_predict_doc_beam(parser, model, doc): parser.model = model parser(doc, beam_width=32, beam_density=0.001) - for word in doc: - print(word.text, word.head, word.dep_) -def test_update_doc_beam(parser, tok2vec, model, doc, gold): +def test_update_doc_beam(parser, model, doc, gold): parser.model = model - tokvecs, bp_tokvecs = tok2vec.begin_update([doc]) - d_tokvecs = parser.update_beam(([doc], tokvecs), [gold]) - assert d_tokvecs[0].shape == tokvecs[0].shape def optimize(weights, gradient, key=None): weights -= 0.001 * gradient - bp_tokvecs(d_tokvecs, sgd=optimize) - assert d_tokvecs[0].sum() == 0. + parser.update_beam([doc], [gold], sgd=optimize) diff --git a/spacy/tests/serialize/test_serialize_tagger.py b/spacy/tests/serialize/test_serialize_tagger.py index 3154687c3..475be1cef 100644 --- a/spacy/tests/serialize/test_serialize_tagger.py +++ b/spacy/tests/serialize/test_serialize_tagger.py @@ -11,7 +11,7 @@ import pytest def taggers(en_vocab): tagger1 = Tagger(en_vocab) tagger2 = Tagger(en_vocab) - tagger1.model = tagger1.Model(8, 8) + tagger1.model = tagger1.Model(8) tagger2.model = tagger1.model return (tagger1, tagger2) diff --git a/spacy/tokens/doc.pxd b/spacy/tokens/doc.pxd index d0c83e0f8..ad2b9876d 100644 --- a/spacy/tokens/doc.pxd +++ b/spacy/tokens/doc.pxd @@ -54,7 +54,7 @@ cdef class Doc: cdef public object noun_chunks_iterator - cdef int push_back(self, LexemeOrToken lex_or_tok, bint trailing_space) except -1 + cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1 cpdef np.ndarray to_array(self, object features) diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index 01e074617..0a420849c 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -324,7 +324,6 @@ cdef class Vocab: self.lexemes_from_bytes(file_.read()) if self.vectors is not None: self.vectors.from_disk(path, exclude='strings.json') - link_vectors_to_models(self) return self def to_bytes(self, **exclude): @@ -364,7 +363,6 @@ cdef class Vocab: ('vectors', lambda b: serialize_vectors(b)) )) util.from_bytes(bytes_data, setters, exclude) - link_vectors_to_models(self) return self def lexemes_to_bytes(self): diff --git a/travis.sh b/travis.sh index d1a1b6b29..eed6a96f2 100755 --- a/travis.sh +++ b/travis.sh @@ -17,7 +17,7 @@ fi if [ "${VIA}" == "compile" ]; then pip install -r requirements.txt - python setup.py clean --all + python setup.py build_ext --inplace pip install -e . fi