mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-03 21:24:11 +03:00
* Improve API docs for Token
This commit is contained in:
parent
64645a1c2f
commit
4258b1490a
|
@ -38,29 +38,35 @@ API
|
||||||
+---------------+-------------+-------------+
|
+---------------+-------------+-------------+
|
||||||
|
|
||||||
|
|
||||||
Internals
|
Internals
|
||||||
A Tokens instance stores the annotations in a C-array of TokenC structs.
|
A Tokens instance stores the annotations in a C-array of `TokenC` structs.
|
||||||
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
|
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
|
||||||
a vocabulary item.
|
a vocabulary item.
|
||||||
|
|
||||||
The Token objects are built lazily, from this underlying C-data.
|
The Token objects are built lazily, from this underlying C-data.
|
||||||
|
|
||||||
For faster access, the underlying C data can be accessed from Cython. You
|
For faster access, the underlying C data can be accessed from Cython. You
|
||||||
can also export the data to a numpy array, via Tokens.to_array, if pure Python
|
can also export the data to a numpy array, via `Tokens.to_array`, if pure Python
|
||||||
access is required, and you need slightly better performance. However, this
|
access is required, and you need slightly better performance. However, this
|
||||||
is both slower and has a worse API than Cython access.
|
is both slower and has a worse API than Cython access.
|
||||||
|
|
||||||
.. Once a Token object has been created, it is persisted internally in Tokens._py_tokens.
|
.. Once a Token object has been created, it is persisted internally in Tokens._py_tokens.
|
||||||
|
|
||||||
|
|
||||||
.. autoclass:: spacy.tokens.Token
|
.. autoclass:: spacy.tokens.Token
|
||||||
:members:
|
|
||||||
|
Integer IDs are provided for all string features. The (unicode) string is
|
||||||
|
provided by an attribute of the same name followed by an underscore, e.g.
|
||||||
|
token.orth is an integer ID, token.orth\_ is the unicode value.
|
||||||
|
|
||||||
|
The only exception is the Token.string attribute, which is (unicode)
|
||||||
|
string-typed.
|
||||||
|
|
||||||
+--------------------------------------------------------------------------------+
|
+--------------------------------------------------------------------------------+
|
||||||
| **Context-independent Attributes** (calculated once per orth-value in vocab) |
|
| **Context-independent Attributes** (calculated once per entry in vocab) |
|
||||||
+-----------------+-------------+-----------+------------------------------------+
|
+-----------------+-------------+-----------+------------------------------------+
|
||||||
| Attribute | Type | Attribute | Type |
|
| Attribute | Type | Attribute | Type |
|
||||||
+=================+=============+===========+====================================+
|
+-----------------+-------------+-----------+------------------------------------+
|
||||||
| orth/orth\_ | int/unicode | __len__ | int |
|
| orth/orth\_ | int/unicode | __len__ | int |
|
||||||
+-----------------+-------------+-----------+------------------------------------+
|
+-----------------+-------------+-----------+------------------------------------+
|
||||||
| lower/lower\_ | int/unicode | cluster | int |
|
| lower/lower\_ | int/unicode | cluster | int |
|
||||||
|
@ -85,7 +91,104 @@ Internals
|
||||||
+-----------------+-------------+-----------+------------------------------------+
|
+-----------------+-------------+-----------+------------------------------------+
|
||||||
| lemma/lemma\_ | int/unicode | | |
|
| lemma/lemma\_ | int/unicode | | |
|
||||||
+-----------------+-------------+-----------+------------------------------------+
|
+-----------------+-------------+-----------+------------------------------------+
|
||||||
|
|
||||||
|
**String Features**
|
||||||
|
|
||||||
|
string
|
||||||
|
The form of the word as it appears in the string, include trailing
|
||||||
|
whitespace. This is useful when you need to use linguistic features to
|
||||||
|
add inline mark-up to the string.
|
||||||
|
|
||||||
|
orth
|
||||||
|
The form of the word with no string normalization or processing, as it
|
||||||
|
appears in the string, without trailing whitespace.
|
||||||
|
|
||||||
|
lemma
|
||||||
|
The "base" of the word, with no inflectional suffixes, e.g. the lemma of
|
||||||
|
"developing" is "develop", the lemma of "geese" is "goose", etc. Note that
|
||||||
|
*derivational* suffixes are not stripped, e.g. the lemma of "instutitions"
|
||||||
|
is "institution", not "institute". Lemmatization is performed using the
|
||||||
|
WordNet data, but extended to also cover closed-class words such as
|
||||||
|
pronouns. By default, the WN lemmatizer returns "hi" as the lemma of "his".
|
||||||
|
We assign pronouns the lemma -PRON-.
|
||||||
|
|
||||||
|
lower
|
||||||
|
The form of the word, but forced to lower-case, i.e. lower = word.orth\_.lower()
|
||||||
|
|
||||||
|
norm
|
||||||
|
The form of the word, after language-specific normalizations have been
|
||||||
|
applied.
|
||||||
|
|
||||||
|
shape
|
||||||
|
A transform of the word's string, to show orthographic features. The
|
||||||
|
characters a-z are mapped to x, A-Z is mapped to X, 0-9 is mapped to d.
|
||||||
|
After these mappings, sequences of 4 or more of the same character are
|
||||||
|
truncated to length 4. Examples: C3Po --> XdXx, favorite --> xxxx,
|
||||||
|
:) --> :)
|
||||||
|
|
||||||
|
prefix
|
||||||
|
A length-N substring from the start of the word. Length may vary by
|
||||||
|
language; currently for English n=1, i.e. prefix = word.orth\_[:1]
|
||||||
|
|
||||||
|
suffix
|
||||||
|
A length-N substring from the end of the word. Length may vary by
|
||||||
|
language; currently for English n=3, i.e. suffix = word.orth\_[-3:]
|
||||||
|
|
||||||
|
**Distributional Features**
|
||||||
|
|
||||||
|
prob
|
||||||
|
The unigram log-probability of the word, estimated from counts from a
|
||||||
|
large corpus, smoothed using Simple Good Turing estimation.
|
||||||
|
|
||||||
|
cluster
|
||||||
|
The Brown cluster ID of the word. These are often useful features for
|
||||||
|
linear models. If you're using a non-linear model, particularly
|
||||||
|
a neural net or random forest, consider using the real-valued word
|
||||||
|
representation vector, in Token.repvec, instead.
|
||||||
|
|
||||||
|
repvec
|
||||||
|
A "word embedding" representation: a dense real-valued vector that supports
|
||||||
|
similarity queries between words. By default, spaCy currently loads
|
||||||
|
vectors produced by the Levy and Goldberg (2014) dependency-based word2vec
|
||||||
|
model.
|
||||||
|
|
||||||
|
**Syntactic Features**
|
||||||
|
|
||||||
|
tag
|
||||||
|
A morphosyntactic tag, e.g. NN, VBZ, DT, etc. These tags are
|
||||||
|
language/corpus specific, and typically describe part-of-speech and some
|
||||||
|
amount of morphological information. For instance, in the Penn Treebank
|
||||||
|
tag set, VBZ is assigned to a present-tense singular verb.
|
||||||
|
|
||||||
|
pos
|
||||||
|
A part-of-speech tag, from the Google Universal Tag Set, e.g. NOUN, VERB,
|
||||||
|
ADV. Constants for the 17 tag values are provided in spacy.parts\_of\_speech.
|
||||||
|
|
||||||
|
dep
|
||||||
|
The type of syntactic dependency relation between the word and its
|
||||||
|
syntactic head.
|
||||||
|
|
||||||
|
n_lefts
|
||||||
|
The number of immediate syntactic children preceding the word in the
|
||||||
|
string.
|
||||||
|
|
||||||
|
n_rights
|
||||||
|
The number of immediate syntactic children following the word in the
|
||||||
|
string.
|
||||||
|
|
||||||
|
**Navigating the Dependency Tree**
|
||||||
|
|
||||||
|
head
|
||||||
|
The Token that is the immediate syntactic head of the word. If the word is
|
||||||
|
the root of the dependency tree, the same word is returned.
|
||||||
|
|
||||||
|
lefts
|
||||||
|
An iterator for the immediate leftward syntactic children of the word.
|
||||||
|
|
||||||
|
rights
|
||||||
|
An iterator for the immediate rightward syntactic children of the word.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
|
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user