* Use tagdict in sense_tagger

This commit is contained in:
Matthew Honnibal 2015-07-05 09:12:53 +02:00
parent 5e0545be5c
commit 427ea16b27

View File

@ -1,12 +1,13 @@
from libc.string cimport memcpy
from libc.math cimport exp
from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor, Feature
from thinc.typedefs cimport atom_t, weight_t, feat_t
cimport cython
from .typedefs cimport flags_t
@ -14,13 +15,14 @@ from .structs cimport TokenC
from .strings cimport StringStore
from .tokens cimport Tokens
from .senses cimport N_SENSES, encode_sense_strs
from .senses cimport NO_SENSE, N_Tops, J_ppl, V_body
from .senses cimport NO_SENSE, N_Tops, J_all, J_pert, A_all, J_ppl, V_body
from .gold cimport GoldParse
from .parts_of_speech cimport NOUN, VERB, N_UNIV_TAGS
from .parts_of_speech cimport NOUN, VERB, ADV, ADJ, N_UNIV_TAGS
from . cimport parts_of_speech
from os import path
import json
@ -223,17 +225,25 @@ cdef class SenseTagger:
cdef readonly Extractor extractor
cdef readonly model_dir
cdef readonly flags_t[<int>N_UNIV_TAGS] pos_senses
cdef dict tagdict
def __init__(self, StringStore strings, model_dir):
if model_dir is not None and path.isdir(model_dir):
model_dir = path.join(model_dir, 'model')
model_dir = path.join(model_dir, 'wsd')
self.model_dir = model_dir
if path.exists(path.join(model_dir, 'supersenses.json')):
self.tagdict = json.load(open(path.join(model_dir, 'supersenses.json')))
else:
self.tagdict = {}
templates = unigrams + bigrams + trigrams
self.extractor = Extractor(templates)
self.model = LinearModel(N_SENSES, self.extractor.n_templ)
self.model_dir = model_dir
if self.model_dir and path.exists(self.model_dir):
self.model.load(self.model_dir, freq_thresh=0)
model_loc = path.join(self.model_dir, 'model')
if model_loc and path.exists(model_loc):
self.model.load(model_loc, freq_thresh=0)
self.strings = strings
self.pos_senses[<int>parts_of_speech.NO_TAG] = 0
@ -252,89 +262,119 @@ cdef class SenseTagger:
self.pos_senses[<int>parts_of_speech.EOL] = 0
cdef flags_t sense = 0
cdef flags_t one = 1
for sense in range(N_Tops, V_body):
self.pos_senses[<int>parts_of_speech.NOUN] |= 1 << sense
self.pos_senses[<int>parts_of_speech.NOUN] |= one << sense
for sense in range(V_body, J_ppl):
self.pos_senses[<int>parts_of_speech.VERB] |= 1 << sense
self.pos_senses[<int>parts_of_speech.VERB] |= one << sense
self.pos_senses[<int>parts_of_speech.ADV] |= one << A_all
self.pos_senses[<int>parts_of_speech.ADJ] |= one << J_all
self.pos_senses[<int>parts_of_speech.ADJ] |= one << J_pert
self.pos_senses[<int>parts_of_speech.ADJ] |= one << J_ppl
def __call__(self, Tokens tokens):
cdef atom_t[CONTEXT_SIZE] local_context
cdef int i, guess, n_feats
cdef flags_t valid_senses = 0
cdef TokenC* token
cdef flags_t one = 1
cdef FeatureVector features = FeatureVector(100)
for i in range(tokens.length):
token = &tokens.data[i]
if token.lex.senses == 1:
continue
assert not (token.lex.senses & (1 << NO_SENSE)), (tokens[i].orth_, token.lex.senses)
assert not (self.pos_senses[<int>token.pos] & (1 << NO_SENSE))
valid_senses = token.lex.senses & self.pos_senses[<int>token.pos]
assert not (valid_senses & (1 << NO_SENSE))
if valid_senses:
if valid_senses >= 2:
fill_context(local_context, token)
local_feats = self.extractor.get_feats(local_context, &n_feats)
features.extend(local_feats, n_feats)
scores = self.model.get_scores(features.c, features.length)
self.weight_scores_by_tagdict(<weight_t*><void*>scores, token, 1.0)
tokens.data[i].sense = self.best_in_set(scores, valid_senses)
features.clear()
def train(self, Tokens tokens, GoldParse gold):
def train(self, Tokens tokens):
cdef int i, j
cdef TokenC* token
for i, ssenses in enumerate(gold.ssenses):
token = &tokens.data[i]
if ssenses:
gold.c.ssenses[i] = encode_sense_strs(ssenses)
elif token.lex.senses >= 2 and token.pos in (NOUN, VERB):
gold.c.ssenses[i] = token.lex.senses & self.pos_senses[<int>token.pos]
else:
gold.c.ssenses[i] = 0
cdef atom_t[CONTEXT_SIZE] context
cdef int n_feats
cdef feat_t f_key
cdef flags_t best_senses = 0
cdef int f_i
cdef int cost = 0
for i in range(tokens.length):
token = &tokens.data[i]
if token.pos in (NOUN, VERB) \
and token.lex.senses >= 2 \
and gold.c.ssenses[i] >= 2:
pos_senses = self.pos_senses[<int>token.pos]
lex_senses = token.lex.senses & pos_senses
if pos_senses >= 2 and lex_senses >= 2:
fill_context(context, token)
feats = self.extractor.get_feats(context, &n_feats)
scores = self.model.get_scores(feats, n_feats)
token.sense = self.best_in_set(scores, self.pos_senses[<int>token.pos])
best = self.best_in_set(scores, gold.c.ssenses[i])
#self.weight_scores_by_tagdict(<weight_t*><void*>scores, token, 0.1)
guess = self.best_in_set(scores, pos_senses)
best = self.best_in_set(scores, lex_senses)
guess_counts = {}
gold_counts = {}
if token.sense != best:
if guess != best:
cost += 1
for j in range(n_feats):
f_key = feats[j].key
f_i = feats[j].i
feat = (f_i, f_key)
gold_counts[feat] = gold_counts.get(feat, 0) + 1.0
guess_counts[feat] = guess_counts.get(feat, 0) - 1.0
self.model.update({token.sense: guess_counts, best: gold_counts})
self.model.update({guess: guess_counts, best: gold_counts})
return cost
cdef int best_in_set(self, const weight_t* scores, flags_t senses) except -1:
cdef weight_t max_ = 0
cdef int argmax = -1
cdef flags_t i
cdef flags_t one = 1
for i in range(N_SENSES):
if (senses & (1 << i)) and (argmax == -1 or scores[i] > max_):
if (senses & (one << i)) and (argmax == -1 or scores[i] > max_):
max_ = scores[i]
argmax = i
assert argmax >= 0
return argmax
@cython.cdivision(True)
cdef int weight_scores_by_tagdict(self, weight_t* scores, const TokenC* token,
weight_t a) except -1:
lemma = self.strings[token.lemma]
if token.pos == NOUN:
key = lemma + '/n'
elif token.pos == VERB:
key = lemma + '/v'
elif token.pos == ADJ:
key = lemma + '/j'
elif token.pos == ADV:
key = lemma + '/a'
else:
return 0
# First softmax the scores
cdef int i
cdef double total = 0
for i in range(N_SENSES):
total += exp(scores[i])
for i in range(N_SENSES):
scores[i] = <weight_t>(exp(scores[i]) / total)
probs = self.tagdict.get(key, {})
for i in range(1, N_SENSES):
prob = probs.get(str(i-1), 0)
scores[i] = (a * prob) + ((1 - a) * scores[i])
def end_training(self):
self.model.end_training()
self.model.dump(path.join(self.model_dir, 'model'), freq_thresh=0)
cdef list _set_bits(flags_t flags):
bits = []
cdef flags_t bit
cdef flags_t one = 1
for bit in range(N_SENSES):
if flags & (1 << bit):
if flags & (one << bit):
bits.append(bit)
return bits