mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Give parser its own tok2vec weights
This commit is contained in:
parent
3ed203de25
commit
42bd26f6f3
|
@ -237,6 +237,7 @@ cdef class Parser:
|
|||
token_vector_width = util.env_opt('token_vector_width', token_vector_width)
|
||||
hidden_width = util.env_opt('hidden_width', hidden_width)
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2)
|
||||
tensors = Tok2Vec(token_vector_width, 7500, preprocess=doc2feats())
|
||||
if parser_maxout_pieces == 1:
|
||||
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
|
||||
nF=cls.nr_feature,
|
||||
|
@ -263,7 +264,7 @@ cdef class Parser:
|
|||
'hidden_width': hidden_width,
|
||||
'maxout_pieces': parser_maxout_pieces
|
||||
}
|
||||
return (lower, upper), cfg
|
||||
return (tensors, lower, upper), cfg
|
||||
|
||||
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
|
||||
"""
|
||||
|
@ -366,6 +367,7 @@ cdef class Parser:
|
|||
tokvecses = [tokvecses]
|
||||
|
||||
tokvecs = self.model[0].ops.flatten(tokvecses)
|
||||
tokvecs += self.model[0].ops.flatten(self.model[0](docs))
|
||||
|
||||
nr_state = len(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
|
@ -417,6 +419,7 @@ cdef class Parser:
|
|||
cdef int nr_class = self.moves.n_moves
|
||||
cdef StateClass stcls, output
|
||||
tokvecs = self.model[0].ops.flatten(tokvecses)
|
||||
tokvecs += self.model[0].ops.flatten(self.model[0](docs))
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs,
|
||||
cuda_stream, 0.0)
|
||||
|
@ -457,6 +460,9 @@ cdef class Parser:
|
|||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs, drop=0.)
|
||||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
|
||||
|
@ -506,7 +512,9 @@ cdef class Parser:
|
|||
break
|
||||
self._make_updates(d_tokvecs,
|
||||
backprops, sgd, cuda_stream)
|
||||
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
#bp_my_tokvecs(d_tokvecs, sgd=sgd)
|
||||
return d_tokvecs
|
||||
|
||||
def _init_gold_batch(self, whole_docs, whole_golds):
|
||||
"""Make a square batch, of length equal to the shortest doc. A long
|
||||
|
@ -569,7 +577,7 @@ cdef class Parser:
|
|||
return names
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
lower, upper = self.model
|
||||
_, lower, upper = self.model
|
||||
state2vec = precompute_hiddens(batch_size, tokvecs,
|
||||
lower, stream, drop=dropout)
|
||||
return state2vec, upper
|
||||
|
@ -659,10 +667,12 @@ cdef class Parser:
|
|||
|
||||
def to_disk(self, path, **exclude):
|
||||
serializers = {
|
||||
'lower_model': lambda p: p.open('wb').write(
|
||||
'tok2vec_model': lambda p: p.open('wb').write(
|
||||
self.model[0].to_bytes()),
|
||||
'upper_model': lambda p: p.open('wb').write(
|
||||
'lower_model': lambda p: p.open('wb').write(
|
||||
self.model[1].to_bytes()),
|
||||
'upper_model': lambda p: p.open('wb').write(
|
||||
self.model[2].to_bytes()),
|
||||
'vocab': lambda p: self.vocab.to_disk(p),
|
||||
'moves': lambda p: self.moves.to_disk(p, strings=False),
|
||||
'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
|
||||
|
@ -683,24 +693,29 @@ cdef class Parser:
|
|||
self.model, cfg = self.Model(**self.cfg)
|
||||
else:
|
||||
cfg = {}
|
||||
with (path / 'lower_model').open('rb') as file_:
|
||||
with (path / 'tok2vec_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[0].from_bytes(bytes_data)
|
||||
with (path / 'upper_model').open('rb') as file_:
|
||||
with (path / 'lower_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[1].from_bytes(bytes_data)
|
||||
with (path / 'upper_model').open('rb') as file_:
|
||||
bytes_data = file_.read()
|
||||
self.model[2].from_bytes(bytes_data)
|
||||
self.cfg.update(cfg)
|
||||
return self
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
serializers = OrderedDict((
|
||||
('lower_model', lambda: self.model[0].to_bytes()),
|
||||
('upper_model', lambda: self.model[1].to_bytes()),
|
||||
('tok2vec_model', lambda: self.model[0].to_bytes()),
|
||||
('lower_model', lambda: self.model[1].to_bytes()),
|
||||
('upper_model', lambda: self.model[2].to_bytes()),
|
||||
('vocab', lambda: self.vocab.to_bytes()),
|
||||
('moves', lambda: self.moves.to_bytes(strings=False)),
|
||||
('cfg', lambda: ujson.dumps(self.cfg))
|
||||
))
|
||||
if 'model' in exclude:
|
||||
exclude['tok2vec_model'] = True
|
||||
exclude['lower_model'] = True
|
||||
exclude['upper_model'] = True
|
||||
exclude.pop('model')
|
||||
|
@ -711,6 +726,7 @@ cdef class Parser:
|
|||
('vocab', lambda b: self.vocab.from_bytes(b)),
|
||||
('moves', lambda b: self.moves.from_bytes(b, strings=False)),
|
||||
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
|
||||
('tok2vec_model', lambda b: None),
|
||||
('lower_model', lambda b: None),
|
||||
('upper_model', lambda b: None)
|
||||
))
|
||||
|
@ -720,10 +736,12 @@ cdef class Parser:
|
|||
self.model, cfg = self.Model(self.moves.n_moves)
|
||||
else:
|
||||
cfg = {}
|
||||
if 'tok2vec_model' in msg:
|
||||
self.model[0].from_bytes(msg['tok2vec_model'])
|
||||
if 'lower_model' in msg:
|
||||
self.model[0].from_bytes(msg['lower_model'])
|
||||
self.model[1].from_bytes(msg['lower_model'])
|
||||
if 'upper_model' in msg:
|
||||
self.model[1].from_bytes(msg['upper_model'])
|
||||
self.model[2].from_bytes(msg['upper_model'])
|
||||
self.cfg.update(cfg)
|
||||
return self
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user