Update NER workflow

This commit is contained in:
ines 2017-05-23 23:17:57 +02:00
parent 61cf2bba55
commit 43258d6b0a

View File

@ -9,14 +9,12 @@ p
| locations, organizations and products. You can add arbitrary classes to | locations, organizations and products. You can add arbitrary classes to
| the entity recognition system, and update the model with new examples. | the entity recognition system, and update the model with new examples.
+aside-code("Example"). +h(2, "101") Named Entity Recognition 101
import spacy +tag-model("named entities")
nlp = spacy.load('en')
doc = nlp(u'London is a big city in the United Kingdom.') include _spacy-101/_named-entities
for ent in doc.ents:
print(ent.label_, ent.text) +h(2, "accessing") Accessing entity annotations
# GPE London
# GPE United Kingdom
p p
| The standard way to access entity annotations is the | The standard way to access entity annotations is the
@ -26,56 +24,89 @@ p
| #[code ent.label] and #[code ent.label_]. The #[code Span] object acts | #[code ent.label] and #[code ent.label_]. The #[code Span] object acts
| as a sequence of tokens, so you can iterate over the entity or index into | as a sequence of tokens, so you can iterate over the entity or index into
| it. You can also get the text form of the whole entity, as though it were | it. You can also get the text form of the whole entity, as though it were
| a single token. See the #[+api("span") API reference] for more details. | a single token.
p p
| You can access token entity annotations using the #[code token.ent_iob] | You can also access token entity annotations using the
| and #[code token.ent_type] attributes. The #[code token.ent_iob] | #[+api("token#attributes") #[code token.ent_iob]] and
| attribute indicates whether an entity starts, continues or ends on the | #[+api("token#attributes") #[code token.ent_type]] attributes.
| tag (In, Begin, Out). | #[code token.ent_iob] indicates whether an entity starts, continues or
| ends on the tag. If no entity type is set on a token, it will return an
| empty string.
+aside("IOB Scheme")
| #[code I] Token is inside an entity.#[br]
| #[code O] Token is outside an entity.#[br]
| #[code B] Token is the beginning of an entity.#[br]
+code("Example"). +code("Example").
doc = nlp(u'London is a big city in the United Kingdom.') doc = nlp(u'San Francisco considers banning sidewalk delivery robots')
print(doc[0].text, doc[0].ent_iob, doc[0].ent_type_)
# (u'London', 2, u'GPE') # document level
print(doc[1].text, doc[1].ent_iob, doc[1].ent_type_) ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
# (u'is', 3, u'') assert ents == [(u'San Francisco', 0, 13, u'GPE')]
# token level
ent_san = [doc[0].text, doc[0].ent_iob_, doc[0].ent_type_]
ent_francisco = [doc[1].text, doc[1].ent_iob_, doc[1].ent_type_]
assert ent_san == [u'San', u'B', u'GPE']
assert ent_francisco == [u'Francisco', u'I', u'GPE']
+table(["Text", "ent_iob", "ent.iob_", "ent_type", "ent_type_", "Description"])
- var style = [0, 1, 1, 1, 1, 0]
+annotation-row(["San", 3, "B", 381, "GPE", "beginning of an entity"], style)
+annotation-row(["Francisco", 1, "I", 381, "GPE", "inside an entity"], style)
+annotation-row(["considers", 2, "O", 0, '""', "outside an entity"], style)
+annotation-row(["banning", 2, "O", 0, '""', "outside an entity"], style)
+annotation-row(["sidewalk", 2, "O", 0, '""', "outside an entity"], style)
+annotation-row(["delivery", 2, "O", 0, '""', "outside an entity"], style)
+annotation-row(["robots", 2, "O", 0, '""', "outside an entity"], style)
+h(2, "setting") Setting entity annotations +h(2, "setting") Setting entity annotations
p p
| To ensure that the sequence of token annotations remains consistent, you | To ensure that the sequence of token annotations remains consistent, you
| have to set entity annotations at the document level — you can't write | have to set entity annotations #[strong at the document level]. However,
| directly to the #[code token.ent_iob] or #[code token.ent_type] | you can't write directly to the #[code token.ent_iob] or
| attributes. The easiest way to set entities is to assign to the | #[code token.ent_type] attributes, so the easiest way to set entities is
| #[code doc.ents] attribute. | to assign to the #[+api("doc#ents") #[code doc.ents]] attribute
| and create the new entity as a #[+api("span") #[code Span]].
+code("Example"). +code("Example").
doc = nlp(u'London is a big city in the United Kingdom.') from spacy.tokens import Span
doc.ents = []
assert doc[0].ent_type_ == '' doc = nlp(u'Netflix is hiring a new VP of global policy')
doc.ents = [Span(doc, 0, 1, label=doc.vocab.strings['GPE'])] # the model didn't recognise any entities :(
assert doc[0].ent_type_ == 'GPE'
doc.ents = [] ORG = doc.vocab.strings[u'ORG'] # get integer ID of entity label
doc.ents = [(u'LondonCity', doc.vocab.strings['GPE'], 0, 1)] netflix_ent = Span(doc, 0, 1, label=ORG) # create a Span for the new entity
doc.ents = [netflix_ent]
ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
assert ents = [(u'Netflix', 0, 7, u'ORG')]
p p
| The value you assign should be a sequence, the values of which | Keep in mind that you need to create a #[code Span] with the start and
| can either be #[code Span] objects, or #[code (ent_id, ent_type, start, end)] | end index of the #[strong token], not the start and end index of the
| tuples, where #[code start] and #[code end] are token offsets that | entity in the document. In this case, "Netflix" is token #[code (0, 1)]
| describe the slice of the document that should be annotated. | but at the document level, the entity will have the start and end
| indices #[code (0, 7)].
+h(3, "setting-from-array") Setting entity annotations from array
p p
| You can also assign entity annotations using the #[code doc.from_array()] | You can also assign entity annotations using the
| method. To do this, you should include both the #[code ENT_TYPE] and the | #[+api("doc#from_array") #[code doc.from_array()]] method. To do this,
| #[code ENT_IOB] attributes in the array you're importing from. | you should include both the #[code ENT_TYPE] and the #[code ENT_IOB]
| attributes in the array you're importing from.
+code("Example"). +code.
from spacy.attrs import ENT_IOB, ENT_TYPE
import numpy import numpy
from spacy.attrs import ENT_IOB, ENT_TYPE
doc = nlp.make_doc(u'London is a big city in the United Kingdom.') doc = nlp.make_doc(u'London is a big city in the United Kingdom.')
assert list(doc.ents) == [] assert list(doc.ents) == []
header = [ENT_IOB, ENT_TYPE] header = [ENT_IOB, ENT_TYPE]
attr_array = numpy.zeros((len(doc), len(header))) attr_array = numpy.zeros((len(doc), len(header)))
attr_array[0, 0] = 2 # B attr_array[0, 0] = 2 # B
@ -83,12 +114,14 @@ p
doc.from_array(header, attr_array) doc.from_array(header, attr_array)
assert list(doc.ents)[0].text == u'London' assert list(doc.ents)[0].text == u'London'
+h(3, "setting-cython") Setting entity annotations in Cython
p p
| Finally, you can always write to the underlying struct, if you compile | Finally, you can always write to the underlying struct, if you compile
| a Cython function. This is easy to do, and allows you to write efficient | a #[+a("http://cython.org/") Cython] function. This is easy to do, and
| native code. | allows you to write efficient native code.
+code("Example"). +code.
# cython: infer_types=True # cython: infer_types=True
from spacy.tokens.doc cimport Doc from spacy.tokens.doc cimport Doc
@ -104,67 +137,30 @@ p
| you'll have responsibility for ensuring that the data is left in a | you'll have responsibility for ensuring that the data is left in a
| consistent state. | consistent state.
+h(2, "displacy") Visualizing named entities
p
| The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
| lets you explore an entity recognition model's behaviour interactively.
| If you're training a model, it's very useful to run the visualization
| yourself. To help you do that, spaCy v2.0+ comes with a visualization
| module. Simply pass a #[code Doc] or a list of #[code Doc] objects to
| displaCy and run #[+api("displacy#serve") #[code displacy.serve]] to
| run the web server, or #[+api("displacy#render") #[code displacy.render]]
| to generate the raw markup.
p
| For more details and examples, see the
| #[+a("/docs/usage/visualizers") usage workflow on visualizing spaCy].
+code("Named Entity example").
import spacy
from spacy import displacy
text = """But Google is starting from behind. The company made a late push
into hardware, and Apples Siri, available on iPhones, and Amazons Alexa
software, which runs on its Echo and Dot devices, have clear leads in
consumer adoption."""
nlp = spacy.load('custom_ner_model')
doc = nlp(text)
displacy.serve(doc, style='ent')
+codepen("a73f8b68f9af3157855962b283b364e4", 345)
+h(2, "entity-types") Built-in entity types +h(2, "entity-types") Built-in entity types
include ../api/_annotation/_named-entities +aside("Tip: Understanding entity types")
| You can also use #[code spacy.explain()] to get the description for the
| string representation of an entity label. For example,
| #[code spacy.explain("LANGUAGE")] will return "any named language".
+aside("Install") include ../api/_annotation/_named-entities
| The #[+api("load") #[code spacy.load()]] function configures a pipeline that
| includes all of the available annotators for the given ID. In the example
| above, the #[code 'en'] ID tells spaCy to load the default English
| pipeline. If you have installed the data with
| #[code python -m spacy download en], this will include the entity
| recognition model.
+h(2, "updating") Training and updating +h(2, "updating") Training and updating
p p
| To provide training examples to the entity recogniser, you'll first need | To provide training examples to the entity recogniser, you'll first need
| to create an instance of the #[code GoldParse] class. You can specify | to create an instance of the #[+api("goldparse") #[code GoldParse]] class.
| your annotations in a stand-off format or as token tags. | You can specify your annotations in a stand-off format or as token tags.
+code. +code.
import spacy
import random import random
import spacy
from spacy.gold import GoldParse from spacy.gold import GoldParse
from spacy.language import EntityRecognizer from spacy.pipeline import EntityRecognizer
train_data = [ train_data = [('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
('Who is Chaka Khan?', [(7, 17, 'PERSON')]), ('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])]
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
]
nlp = spacy.load('en', entity=False, parser=False) nlp = spacy.load('en', entity=False, parser=False)
ner = EntityRecognizer(nlp.vocab, entity_types=['PERSON', 'LOC']) ner = EntityRecognizer(nlp.vocab, entity_types=['PERSON', 'LOC'])
@ -237,3 +233,34 @@ p
| loss, via the #[+a("http://www.aclweb.org/anthology/C12-1059") dynamic oracle] | loss, via the #[+a("http://www.aclweb.org/anthology/C12-1059") dynamic oracle]
| imitation learning strategy. The transition system is equivalent to the | imitation learning strategy. The transition system is equivalent to the
| BILOU tagging scheme. | BILOU tagging scheme.
+h(2, "displacy") Visualizing named entities
p
| The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
| lets you explore an entity recognition model's behaviour interactively.
| If you're training a model, it's very useful to run the visualization
| yourself. To help you do that, spaCy v2.0+ comes with a visualization
| module. Simply pass a #[code Doc] or a list of #[code Doc] objects to
| displaCy and run #[+api("displacy#serve") #[code displacy.serve]] to
| run the web server, or #[+api("displacy#render") #[code displacy.render]]
| to generate the raw markup.
p
| For more details and examples, see the
| #[+a("/docs/usage/visualizers") usage workflow on visualizing spaCy].
+code("Named Entity example").
import spacy
from spacy import displacy
text = """But Google is starting from behind. The company made a late push
into hardware, and Apples Siri, available on iPhones, and Amazons Alexa
software, which runs on its Echo and Dot devices, have clear leads in
consumer adoption."""
nlp = spacy.load('custom_ner_model')
doc = nlp(text)
displacy.serve(doc, style='ent')
+codepen("a73f8b68f9af3157855962b283b364e4", 345)