mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Update NER workflow
This commit is contained in:
parent
61cf2bba55
commit
43258d6b0a
|
@ -9,14 +9,12 @@ p
|
|||
| locations, organizations and products. You can add arbitrary classes to
|
||||
| the entity recognition system, and update the model with new examples.
|
||||
|
||||
+aside-code("Example").
|
||||
import spacy
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp(u'London is a big city in the United Kingdom.')
|
||||
for ent in doc.ents:
|
||||
print(ent.label_, ent.text)
|
||||
# GPE London
|
||||
# GPE United Kingdom
|
||||
+h(2, "101") Named Entity Recognition 101
|
||||
+tag-model("named entities")
|
||||
|
||||
include _spacy-101/_named-entities
|
||||
|
||||
+h(2, "accessing") Accessing entity annotations
|
||||
|
||||
p
|
||||
| The standard way to access entity annotations is the
|
||||
|
@ -26,56 +24,89 @@ p
|
|||
| #[code ent.label] and #[code ent.label_]. The #[code Span] object acts
|
||||
| as a sequence of tokens, so you can iterate over the entity or index into
|
||||
| it. You can also get the text form of the whole entity, as though it were
|
||||
| a single token. See the #[+api("span") API reference] for more details.
|
||||
| a single token.
|
||||
|
||||
p
|
||||
| You can access token entity annotations using the #[code token.ent_iob]
|
||||
| and #[code token.ent_type] attributes. The #[code token.ent_iob]
|
||||
| attribute indicates whether an entity starts, continues or ends on the
|
||||
| tag (In, Begin, Out).
|
||||
| You can also access token entity annotations using the
|
||||
| #[+api("token#attributes") #[code token.ent_iob]] and
|
||||
| #[+api("token#attributes") #[code token.ent_type]] attributes.
|
||||
| #[code token.ent_iob] indicates whether an entity starts, continues or
|
||||
| ends on the tag. If no entity type is set on a token, it will return an
|
||||
| empty string.
|
||||
|
||||
+aside("IOB Scheme")
|
||||
| #[code I] – Token is inside an entity.#[br]
|
||||
| #[code O] – Token is outside an entity.#[br]
|
||||
| #[code B] – Token is the beginning of an entity.#[br]
|
||||
|
||||
+code("Example").
|
||||
doc = nlp(u'London is a big city in the United Kingdom.')
|
||||
print(doc[0].text, doc[0].ent_iob, doc[0].ent_type_)
|
||||
# (u'London', 2, u'GPE')
|
||||
print(doc[1].text, doc[1].ent_iob, doc[1].ent_type_)
|
||||
# (u'is', 3, u'')
|
||||
doc = nlp(u'San Francisco considers banning sidewalk delivery robots')
|
||||
|
||||
# document level
|
||||
ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
|
||||
assert ents == [(u'San Francisco', 0, 13, u'GPE')]
|
||||
|
||||
# token level
|
||||
ent_san = [doc[0].text, doc[0].ent_iob_, doc[0].ent_type_]
|
||||
ent_francisco = [doc[1].text, doc[1].ent_iob_, doc[1].ent_type_]
|
||||
assert ent_san == [u'San', u'B', u'GPE']
|
||||
assert ent_francisco == [u'Francisco', u'I', u'GPE']
|
||||
|
||||
+table(["Text", "ent_iob", "ent.iob_", "ent_type", "ent_type_", "Description"])
|
||||
- var style = [0, 1, 1, 1, 1, 0]
|
||||
+annotation-row(["San", 3, "B", 381, "GPE", "beginning of an entity"], style)
|
||||
+annotation-row(["Francisco", 1, "I", 381, "GPE", "inside an entity"], style)
|
||||
+annotation-row(["considers", 2, "O", 0, '""', "outside an entity"], style)
|
||||
+annotation-row(["banning", 2, "O", 0, '""', "outside an entity"], style)
|
||||
+annotation-row(["sidewalk", 2, "O", 0, '""', "outside an entity"], style)
|
||||
+annotation-row(["delivery", 2, "O", 0, '""', "outside an entity"], style)
|
||||
+annotation-row(["robots", 2, "O", 0, '""', "outside an entity"], style)
|
||||
|
||||
+h(2, "setting") Setting entity annotations
|
||||
|
||||
p
|
||||
| To ensure that the sequence of token annotations remains consistent, you
|
||||
| have to set entity annotations at the document level — you can't write
|
||||
| directly to the #[code token.ent_iob] or #[code token.ent_type]
|
||||
| attributes. The easiest way to set entities is to assign to the
|
||||
| #[code doc.ents] attribute.
|
||||
| have to set entity annotations #[strong at the document level]. However,
|
||||
| you can't write directly to the #[code token.ent_iob] or
|
||||
| #[code token.ent_type] attributes, so the easiest way to set entities is
|
||||
| to assign to the #[+api("doc#ents") #[code doc.ents]] attribute
|
||||
| and create the new entity as a #[+api("span") #[code Span]].
|
||||
|
||||
+code("Example").
|
||||
doc = nlp(u'London is a big city in the United Kingdom.')
|
||||
doc.ents = []
|
||||
assert doc[0].ent_type_ == ''
|
||||
doc.ents = [Span(doc, 0, 1, label=doc.vocab.strings['GPE'])]
|
||||
assert doc[0].ent_type_ == 'GPE'
|
||||
doc.ents = []
|
||||
doc.ents = [(u'LondonCity', doc.vocab.strings['GPE'], 0, 1)]
|
||||
from spacy.tokens import Span
|
||||
|
||||
doc = nlp(u'Netflix is hiring a new VP of global policy')
|
||||
# the model didn't recognise any entities :(
|
||||
|
||||
ORG = doc.vocab.strings[u'ORG'] # get integer ID of entity label
|
||||
netflix_ent = Span(doc, 0, 1, label=ORG) # create a Span for the new entity
|
||||
doc.ents = [netflix_ent]
|
||||
|
||||
ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
|
||||
assert ents = [(u'Netflix', 0, 7, u'ORG')]
|
||||
|
||||
p
|
||||
| The value you assign should be a sequence, the values of which
|
||||
| can either be #[code Span] objects, or #[code (ent_id, ent_type, start, end)]
|
||||
| tuples, where #[code start] and #[code end] are token offsets that
|
||||
| describe the slice of the document that should be annotated.
|
||||
| Keep in mind that you need to create a #[code Span] with the start and
|
||||
| end index of the #[strong token], not the start and end index of the
|
||||
| entity in the document. In this case, "Netflix" is token #[code (0, 1)] –
|
||||
| but at the document level, the entity will have the start and end
|
||||
| indices #[code (0, 7)].
|
||||
|
||||
+h(3, "setting-from-array") Setting entity annotations from array
|
||||
|
||||
p
|
||||
| You can also assign entity annotations using the #[code doc.from_array()]
|
||||
| method. To do this, you should include both the #[code ENT_TYPE] and the
|
||||
| #[code ENT_IOB] attributes in the array you're importing from.
|
||||
| You can also assign entity annotations using the
|
||||
| #[+api("doc#from_array") #[code doc.from_array()]] method. To do this,
|
||||
| you should include both the #[code ENT_TYPE] and the #[code ENT_IOB]
|
||||
| attributes in the array you're importing from.
|
||||
|
||||
+code("Example").
|
||||
from spacy.attrs import ENT_IOB, ENT_TYPE
|
||||
+code.
|
||||
import numpy
|
||||
from spacy.attrs import ENT_IOB, ENT_TYPE
|
||||
|
||||
doc = nlp.make_doc(u'London is a big city in the United Kingdom.')
|
||||
assert list(doc.ents) == []
|
||||
|
||||
header = [ENT_IOB, ENT_TYPE]
|
||||
attr_array = numpy.zeros((len(doc), len(header)))
|
||||
attr_array[0, 0] = 2 # B
|
||||
|
@ -83,12 +114,14 @@ p
|
|||
doc.from_array(header, attr_array)
|
||||
assert list(doc.ents)[0].text == u'London'
|
||||
|
||||
+h(3, "setting-cython") Setting entity annotations in Cython
|
||||
|
||||
p
|
||||
| Finally, you can always write to the underlying struct, if you compile
|
||||
| a Cython function. This is easy to do, and allows you to write efficient
|
||||
| native code.
|
||||
| a #[+a("http://cython.org/") Cython] function. This is easy to do, and
|
||||
| allows you to write efficient native code.
|
||||
|
||||
+code("Example").
|
||||
+code.
|
||||
# cython: infer_types=True
|
||||
from spacy.tokens.doc cimport Doc
|
||||
|
||||
|
@ -104,67 +137,30 @@ p
|
|||
| you'll have responsibility for ensuring that the data is left in a
|
||||
| consistent state.
|
||||
|
||||
|
||||
+h(2, "displacy") Visualizing named entities
|
||||
|
||||
p
|
||||
| The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
|
||||
| lets you explore an entity recognition model's behaviour interactively.
|
||||
| If you're training a model, it's very useful to run the visualization
|
||||
| yourself. To help you do that, spaCy v2.0+ comes with a visualization
|
||||
| module. Simply pass a #[code Doc] or a list of #[code Doc] objects to
|
||||
| displaCy and run #[+api("displacy#serve") #[code displacy.serve]] to
|
||||
| run the web server, or #[+api("displacy#render") #[code displacy.render]]
|
||||
| to generate the raw markup.
|
||||
|
||||
p
|
||||
| For more details and examples, see the
|
||||
| #[+a("/docs/usage/visualizers") usage workflow on visualizing spaCy].
|
||||
|
||||
+code("Named Entity example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
text = """But Google is starting from behind. The company made a late push
|
||||
into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa
|
||||
software, which runs on its Echo and Dot devices, have clear leads in
|
||||
consumer adoption."""
|
||||
|
||||
nlp = spacy.load('custom_ner_model')
|
||||
doc = nlp(text)
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
+codepen("a73f8b68f9af3157855962b283b364e4", 345)
|
||||
|
||||
+h(2, "entity-types") Built-in entity types
|
||||
|
||||
include ../api/_annotation/_named-entities
|
||||
+aside("Tip: Understanding entity types")
|
||||
| You can also use #[code spacy.explain()] to get the description for the
|
||||
| string representation of an entity label. For example,
|
||||
| #[code spacy.explain("LANGUAGE")] will return "any named language".
|
||||
|
||||
+aside("Install")
|
||||
| The #[+api("load") #[code spacy.load()]] function configures a pipeline that
|
||||
| includes all of the available annotators for the given ID. In the example
|
||||
| above, the #[code 'en'] ID tells spaCy to load the default English
|
||||
| pipeline. If you have installed the data with
|
||||
| #[code python -m spacy download en], this will include the entity
|
||||
| recognition model.
|
||||
include ../api/_annotation/_named-entities
|
||||
|
||||
+h(2, "updating") Training and updating
|
||||
|
||||
p
|
||||
| To provide training examples to the entity recogniser, you'll first need
|
||||
| to create an instance of the #[code GoldParse] class. You can specify
|
||||
| your annotations in a stand-off format or as token tags.
|
||||
| to create an instance of the #[+api("goldparse") #[code GoldParse]] class.
|
||||
| You can specify your annotations in a stand-off format or as token tags.
|
||||
|
||||
+code.
|
||||
import spacy
|
||||
import random
|
||||
import spacy
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.language import EntityRecognizer
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
|
||||
train_data = [
|
||||
('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
|
||||
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
|
||||
]
|
||||
train_data = [('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
|
||||
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])]
|
||||
|
||||
nlp = spacy.load('en', entity=False, parser=False)
|
||||
ner = EntityRecognizer(nlp.vocab, entity_types=['PERSON', 'LOC'])
|
||||
|
@ -237,3 +233,34 @@ p
|
|||
| loss, via the #[+a("http://www.aclweb.org/anthology/C12-1059") dynamic oracle]
|
||||
| imitation learning strategy. The transition system is equivalent to the
|
||||
| BILOU tagging scheme.
|
||||
|
||||
+h(2, "displacy") Visualizing named entities
|
||||
|
||||
p
|
||||
| The #[+a(DEMOS_URL + "/displacy-ent/") displaCy #[sup ENT] visualizer]
|
||||
| lets you explore an entity recognition model's behaviour interactively.
|
||||
| If you're training a model, it's very useful to run the visualization
|
||||
| yourself. To help you do that, spaCy v2.0+ comes with a visualization
|
||||
| module. Simply pass a #[code Doc] or a list of #[code Doc] objects to
|
||||
| displaCy and run #[+api("displacy#serve") #[code displacy.serve]] to
|
||||
| run the web server, or #[+api("displacy#render") #[code displacy.render]]
|
||||
| to generate the raw markup.
|
||||
|
||||
p
|
||||
| For more details and examples, see the
|
||||
| #[+a("/docs/usage/visualizers") usage workflow on visualizing spaCy].
|
||||
|
||||
+code("Named Entity example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
text = """But Google is starting from behind. The company made a late push
|
||||
into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa
|
||||
software, which runs on its Echo and Dot devices, have clear leads in
|
||||
consumer adoption."""
|
||||
|
||||
nlp = spacy.load('custom_ner_model')
|
||||
doc = nlp(text)
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
+codepen("a73f8b68f9af3157855962b283b364e4", 345)
|
||||
|
|
Loading…
Reference in New Issue
Block a user