Merge pre-trained vectors and noshare patches

This commit is contained in:
Matthew Honnibal 2017-09-22 20:07:28 -05:00
commit 4348c479fc
6 changed files with 102 additions and 85 deletions

View File

@ -4,6 +4,7 @@ from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
import thinc.extra.load_nlp
import random
import cytoolz
@ -31,6 +32,7 @@ from . import util
import numpy
import io
VECTORS_KEY = 'spacy_pretrained_vectors'
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.):
@ -225,45 +227,51 @@ def drop_layer(layer, factor=2.):
model.predict = layer
return model
def link_vectors_to_models(vocab):
vectors = vocab.vectors
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data
def Tok2Vec(width, embed_size, **kwargs):
pretrained_dims = kwargs.get('pretrained_dims', 0)
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
'*': reapply}):
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm')
prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix')
suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix')
shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape')
if pretrained_dims is not None and pretrained_dims >= 1:
glove = StaticVectors(VECTORS_KEY, width, column=cols.index(ID))
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> LN(Maxout(width, width*5, pieces=3)), column=5)
else:
embed = uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width*4, pieces=3)), column=5)
trained_vectors = (
FeatureExtracter(cols)
>> with_flatten(
uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width*4, pieces=3)), column=5)
)
)
convolution = Residual(
ExtractWindow(nW=1)
>> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces))
)
if pretrained_dims >= 1:
embed = concatenate_lists(trained_vectors, SpacyVectors)
tok2vec = (
embed
>> with_flatten(
Affine(width, width+pretrained_dims)
>> convolution ** 4,
pad=4)
)
else:
embed = trained_vectors
tok2vec = (
embed
>> with_flatten(convolution ** 4, pad=4)
)
tok2vec = (
FeatureExtracter(cols)
>> with_flatten(
embed >> (convolution * 4), pad=4)
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
@ -271,6 +279,28 @@ def Tok2Vec(width, embed_size, **kwargs):
return tok2vec
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
@ -474,11 +504,13 @@ def getitem(i):
return X[i], None
return layerize(getitem_fwd)
def build_tagger_model(nr_class, pretrained_dims=0, **cfg):
def build_tagger_model(nr_class, **cfg):
embed_size = util.env_opt('embed_size', 4000)
if 'token_vector_width' not in cfg:
if 'token_vector_width' in cfg:
token_vector_width = cfg['token_vector_width']
else:
token_vector_width = util.env_opt('token_vector_width', 128)
pretrained_dims = cfg.get('pretrained_dims', 0)
with Model.define_operators({'>>': chain, '+': add}):
tok2vec = Tok2Vec(token_vector_width, embed_size,
pretrained_dims=pretrained_dims)

View File

@ -35,14 +35,14 @@ numpy.random.seed(0)
n_iter=("number of iterations", "option", "n", int),
n_sents=("number of sentences", "option", "ns", int),
use_gpu=("Use GPU", "option", "g", int),
resume=("Whether to resume training", "flag", "R", bool),
vectors=("Model to load vectors from", "option", "v"),
no_tagger=("Don't train tagger", "flag", "T", bool),
no_parser=("Don't train parser", "flag", "P", bool),
no_entities=("Don't train NER", "flag", "N", bool),
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
)
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
use_gpu=-1, resume=False, no_tagger=False, no_parser=False, no_entities=False,
use_gpu=-1, vectors=None, no_tagger=False, no_parser=False, no_entities=False,
gold_preproc=False):
"""
Train a model. Expects data in spaCy's JSON format.
@ -78,25 +78,20 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
n_train_words = corpus.count_train()
if not resume:
lang_class = util.get_lang_class(lang)
nlp = lang_class(pipeline=pipeline)
optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
else:
print("Load resume")
util.use_gpu(use_gpu)
nlp = _resume_model(lang, pipeline, corpus)
optimizer = nlp.resume_training(device=use_gpu)
lang_class = nlp.__class__
lang_class = util.get_lang_class(lang)
nlp = lang_class(pipeline=pipeline)
if vectors:
util.load_model(vectors, vocab=nlp.vocab)
optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
nlp._optimizer = None
print("Itn.\tLoss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
try:
train_docs = corpus.train_docs(nlp, projectivize=True, noise_level=0.0,
gold_preproc=gold_preproc, max_length=0)
train_docs = list(train_docs)
for i in range(n_iter):
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
train_docs = corpus.train_docs(nlp, projectivize=True, noise_level=0.0,
gold_preproc=gold_preproc, max_length=0)
losses = {}
for batch in minibatch(train_docs, size=batch_sizes):
docs, golds = zip(*batch)
@ -109,8 +104,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
util.set_env_log(False)
epoch_model_path = output_path / ('model%d' % i)
nlp.to_disk(epoch_model_path)
#nlp_loaded = lang_class(pipeline=pipeline)
#nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
nlp_loaded = lang_class(pipeline=pipeline)
nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
scorer = nlp.evaluate(
corpus.dev_docs(
nlp,
@ -129,26 +124,6 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
except:
pass
def _resume_model(lang, pipeline, corpus):
nlp = util.load_model(lang)
pipes = {getattr(pipe, 'name', None) for pipe in nlp.pipeline}
for name in pipeline:
if name not in pipes:
factory = nlp.Defaults.factories[name]
for pipe in factory(nlp):
if hasattr(pipe, 'begin_training'):
pipe.begin_training(corpus.train_tuples,
pipeline=nlp.pipeline)
nlp.pipeline.append(pipe)
nlp.meta['pipeline'] = pipeline
if nlp.vocab.vectors.data.shape[1] >= 1:
nlp.vocab.vectors.data = Model.ops.asarray(
nlp.vocab.vectors.data)
return nlp
def _render_parses(i, to_render):
to_render[0].user_data['title'] = "Batch %d" % i
with Path('/tmp/entities.html').open('w') as file_:

View File

@ -348,7 +348,6 @@ class Language(object):
self._optimizer.device = device
return self._optimizer
def begin_training(self, get_gold_tuples=None, **cfg):
"""Allocate models, pre-process training data and acquire a trainer and
optimizer. Used as a contextmanager.

View File

@ -43,6 +43,7 @@ from .compat import json_dumps
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
from ._ml import rebatch, Tok2Vec, flatten
from ._ml import build_text_classifier, build_tagger_model
from ._ml import link_vectors_to_models
from .parts_of_speech import X
@ -121,6 +122,7 @@ class BaseThincComponent(object):
token_vector_width = pipeline[0].model.nO
if self.model is True:
self.model = self.Model(1, token_vector_width)
link_vectors_to_models(self.vocab)
def use_params(self, params):
with self.model.use_params(params):
@ -143,8 +145,8 @@ class BaseThincComponent(object):
deserialize = OrderedDict((
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
('model', load_model),
('vocab', lambda b: self.vocab.from_bytes(b))
('model', load_model),
))
util.from_bytes(bytes_data, deserialize, exclude)
return self
@ -152,8 +154,8 @@ class BaseThincComponent(object):
def to_disk(self, path, **exclude):
serialize = OrderedDict((
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))),
('vocab', lambda p: self.vocab.to_disk(p)),
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
('vocab', lambda p: self.vocab.to_disk(p))
))
util.to_disk(path, serialize, exclude)
@ -166,8 +168,8 @@ class BaseThincComponent(object):
deserialize = OrderedDict((
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
('model', load_model),
('vocab', lambda p: self.vocab.from_disk(p)),
('model', load_model),
))
util.from_disk(path, deserialize, exclude)
return self
@ -215,7 +217,7 @@ class TokenVectorEncoder(BaseThincComponent):
self.model = model
self.cfg = dict(cfg)
self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
self.cfg.setdefault('cnn_maxout_pieces', 2)
self.cfg.setdefault('cnn_maxout_pieces', 3)
def __call__(self, doc):
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
@ -287,7 +289,9 @@ class TokenVectorEncoder(BaseThincComponent):
pipeline (list): The pipeline the model is part of.
"""
if self.model is True:
self.cfg['pretrained_dims'] = self.vocab.vectors_length
self.model = self.Model(**self.cfg)
link_vectors_to_models(self.vocab)
class NeuralTagger(BaseThincComponent):
@ -297,6 +301,7 @@ class NeuralTagger(BaseThincComponent):
self.model = model
self.cfg = dict(cfg)
self.cfg.setdefault('cnn_maxout_pieces', 2)
self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1])
def __call__(self, doc):
tags = self.predict([doc])
@ -388,8 +393,9 @@ class NeuralTagger(BaseThincComponent):
vocab.morphology.lemmatizer,
exc=vocab.morphology.exc)
if self.model is True:
self.model = self.Model(self.vocab.morphology.n_tags,
pretrained_dims=self.vocab.vectors_length)
self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
link_vectors_to_models(self.vocab)
@classmethod
def Model(cls, n_tags, **cfg):
@ -414,8 +420,7 @@ class NeuralTagger(BaseThincComponent):
if self.model is True:
token_vector_width = util.env_opt('token_vector_width',
self.cfg.get('token_vector_width', 128))
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width,
pretrained_dims=self.vocab.vectors_length)
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
self.model.from_bytes(b)
def load_tag_map(b):
@ -449,10 +454,7 @@ class NeuralTagger(BaseThincComponent):
def from_disk(self, path, **exclude):
def load_model(p):
if self.model is True:
token_vector_width = util.env_opt('token_vector_width',
self.cfg.get('token_vector_width', 128))
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width,
**self.cfg)
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
self.model.from_bytes(p.open('rb').read())
def load_tag_map(p):
@ -480,6 +482,7 @@ class NeuralLabeller(NeuralTagger):
self.model = model
self.cfg = dict(cfg)
self.cfg.setdefault('cnn_maxout_pieces', 2)
self.cfg.setdefault('pretrained_dims', self.vocab.vectors.data.shape[1])
@property
def labels(self):
@ -502,13 +505,13 @@ class NeuralLabeller(NeuralTagger):
self.labels[dep] = len(self.labels)
token_vector_width = pipeline[0].model.nO
if self.model is True:
self.model = self.Model(len(self.labels), token_vector_width,
pretrained_dims=self.vocab.vectors_length)
self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
self.model = self.Model(len(self.labels), **self.cfg)
link_vectors_to_models(self.vocab)
@classmethod
def Model(cls, n_tags, token_vector_width, pretrained_dims=0):
return build_tagger_model(n_tags, token_vector_width,
pretrained_dims)
def Model(cls, n_tags, **cfg):
return build_tagger_model(n_tags, **cfg)
def get_loss(self, docs, golds, scores):
scores = self.model.ops.flatten(scores)
@ -579,6 +582,7 @@ class SimilarityHook(BaseThincComponent):
"""
if self.model is True:
self.model = self.Model(pipeline[0].model.nO)
link_vectors_to_models(self.vocab)
class TextCategorizer(BaseThincComponent):
@ -650,6 +654,7 @@ class TextCategorizer(BaseThincComponent):
self.cfg['pretrained_dims'] = self.vocab.vectors_length
self.model = self.Model(len(self.labels), token_vector_width,
**self.cfg)
link_vectors_to_models(self.vocab)
cdef class EntityRecognizer(LinearParser):

View File

@ -49,6 +49,7 @@ from ..util import get_async, get_cuda_stream
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune
from .._ml import Residual, drop_layer, flatten
from .._ml import link_vectors_to_models
from ..compat import json_dumps
from . import _parse_features
@ -310,6 +311,7 @@ cdef class Parser:
cfg['beam_density'] = util.env_opt('beam_density', 0.0)
if 'pretrained_dims' not in cfg:
cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
cfg.setdefault('cnn_maxout_pieces', 3)
self.cfg = cfg
if 'actions' in self.cfg:
for action, labels in self.cfg.get('actions', {}).items():
@ -754,6 +756,7 @@ cdef class Parser:
if self.model is True:
cfg['pretrained_dims'] = self.vocab.vectors_length
self.model, cfg = self.Model(self.moves.n_moves, **cfg)
link_vectors_to_models(self.vocab)
self.cfg.update(cfg)
def preprocess_gold(self, docs_golds):
@ -835,8 +838,7 @@ cdef class Parser:
msg = util.from_bytes(bytes_data, deserializers, exclude)
if 'model' not in exclude:
if self.model is True:
self.model, cfg = self.Model(self.moves.n_moves,
pretrained_dims=self.vocab.vectors_length)
self.model, cfg = self.Model(**self.cfg)
cfg['pretrained_dims'] = self.vocab.vectors_length
else:
cfg = {}

View File

@ -27,6 +27,7 @@ from .vectors import Vectors
from . import util
from . import attrs
from . import symbols
from ._ml import link_vectors_to_models
cdef class Vocab:
@ -323,6 +324,7 @@ cdef class Vocab:
self.lexemes_from_bytes(file_.read())
if self.vectors is not None:
self.vectors.from_disk(path, exclude='strings.json')
link_vectors_to_models(self)
return self
def to_bytes(self, **exclude):
@ -362,6 +364,7 @@ cdef class Vocab:
('vectors', lambda b: serialize_vectors(b))
))
util.from_bytes(bytes_data, setters, exclude)
link_vectors_to_models(self)
return self
def lexemes_to_bytes(self):
@ -436,6 +439,7 @@ def unpickle_vocab(sstore, morphology, data_dir,
vocab.lex_attr_getters = lex_attr_getters
vocab.lexemes_from_bytes(lexemes_data)
vocab.length = length
link_vectors_to_models(vocab)
return vocab