Auto-format examples

This commit is contained in:
Ines Montani 2018-12-02 04:26:26 +01:00
parent 6f2d3c863a
commit 45798cc53e
22 changed files with 708 additions and 506 deletions

View File

@ -1,5 +1,12 @@
"""
This example shows how to use an LSTM sentiment classification model trained using Keras in spaCy. spaCy splits the document into sentences, and each sentence is classified using the LSTM. The scores for the sentences are then aggregated to give the document score. This kind of hierarchical model is quite difficult in "pure" Keras or Tensorflow, but it's very effective. The Keras example on this dataset performs quite poorly, because it cuts off the documents so that they're a fixed size. This hurts review accuracy a lot, because people often summarise their rating in the final sentence
This example shows how to use an LSTM sentiment classification model trained
using Keras in spaCy. spaCy splits the document into sentences, and each
sentence is classified using the LSTM. The scores for the sentences are then
aggregated to give the document score. This kind of hierarchical model is quite
difficult in "pure" Keras or Tensorflow, but it's very effective. The Keras
example on this dataset performs quite poorly, because it cuts off the documents
so that they're a fixed size. This hurts review accuracy a lot, because people
often summarise their rating in the final sentence
Prerequisites:
spacy download en_vectors_web_lg
@ -25,9 +32,9 @@ import spacy
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
with (path / 'config.json').open() as file_:
with (path / "config.json").open() as file_:
model = model_from_json(file_.read())
with (path / 'model').open('rb') as file_:
with (path / "model").open("rb") as file_:
lstm_weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + lstm_weights)
@ -69,12 +76,12 @@ def get_labelled_sentences(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, numpy.asarray(labels, dtype='int32')
return sentences, numpy.asarray(labels, dtype="int32")
def get_features(docs, max_length):
docs = list(docs)
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
Xs = numpy.zeros((len(docs), max_length), dtype="int32")
for i, doc in enumerate(docs):
j = 0
for token in doc:
@ -89,16 +96,25 @@ def get_features(docs, max_length):
return Xs
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100,
nb_epoch=5, by_sentence=True):
def train(
train_texts,
train_labels,
dev_texts,
dev_labels,
lstm_shape,
lstm_settings,
lstm_optimizer,
batch_size=100,
nb_epoch=5,
by_sentence=True,
):
print("Loading spaCy")
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp = spacy.load("en_vectors_web_lg")
nlp.add_pipe(nlp.create_pipe("sentencizer"))
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts))
dev_docs = list(nlp.pipe(dev_texts))
@ -106,10 +122,15 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
train_X = get_features(train_docs, lstm_shape['max_length'])
dev_X = get_features(dev_docs, lstm_shape['max_length'])
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
epochs=nb_epoch, batch_size=batch_size)
train_X = get_features(train_docs, lstm_shape["max_length"])
dev_X = get_features(dev_docs, lstm_shape["max_length"])
model.fit(
train_X,
train_labels,
validation_data=(dev_X, dev_labels),
epochs=nb_epoch,
batch_size=batch_size,
)
return model
@ -119,19 +140,28 @@ def compile_lstm(embeddings, shape, settings):
Embedding(
embeddings.shape[0],
embeddings.shape[1],
input_length=shape['max_length'],
input_length=shape["max_length"],
trainable=False,
weights=[embeddings],
mask_zero=True
mask_zero=True,
)
)
model.add(TimeDistributed(Dense(shape['nr_hidden'], use_bias=False)))
model.add(Bidirectional(LSTM(shape['nr_hidden'],
recurrent_dropout=settings['dropout'],
dropout=settings['dropout'])))
model.add(Dense(shape['nr_class'], activation='sigmoid'))
model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
metrics=['accuracy'])
model.add(TimeDistributed(Dense(shape["nr_hidden"], use_bias=False)))
model.add(
Bidirectional(
LSTM(
shape["nr_hidden"],
recurrent_dropout=settings["dropout"],
dropout=settings["dropout"],
)
)
)
model.add(Dense(shape["nr_class"], activation="sigmoid"))
model.compile(
optimizer=Adam(lr=settings["lr"]),
loss="binary_crossentropy",
metrics=["accuracy"],
)
return model
@ -140,8 +170,8 @@ def get_embeddings(vocab):
def evaluate(model_dir, texts, labels, max_length=100):
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp = spacy.load("en_vectors_web_lg")
nlp.add_pipe(nlp.create_pipe("sentencizer"))
nlp.add_pipe(SentimentAnalyser.load(model_dir, nlp, max_length=max_length))
correct = 0
@ -154,7 +184,7 @@ def evaluate(model_dir, texts, labels, max_length=100):
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for subdir, label in (("pos", 1), ("neg", 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
@ -162,7 +192,7 @@ def read_data(data_dir, limit=0):
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
return zip(*examples) # Unzips into two lists
@plac.annotations(
@ -176,13 +206,21 @@ def read_data(data_dir, limit=0):
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
nr_examples=("Limit to N examples", "option", "n", int),
)
def main(model_dir=None, train_dir=None, dev_dir=None,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=256, nr_examples=-1): # Training params
def main(
model_dir=None,
train_dir=None,
dev_dir=None,
is_runtime=False,
nr_hidden=64,
max_length=100, # Shape
dropout=0.5,
learn_rate=0.001, # General NN config
nb_epoch=5,
batch_size=256,
nr_examples=-1,
): # Training params
if model_dir is not None:
model_dir = pathlib.Path(model_dir)
if train_dir is None or dev_dir is None:
@ -204,20 +242,26 @@ def main(model_dir=None, train_dir=None, dev_dir=None,
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir, imdb_data, limit=nr_examples)
train_labels = numpy.asarray(train_labels, dtype='int32')
dev_labels = numpy.asarray(dev_labels, dtype='int32')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 1},
{'dropout': dropout, 'lr': learn_rate},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
train_labels = numpy.asarray(train_labels, dtype="int32")
dev_labels = numpy.asarray(dev_labels, dtype="int32")
lstm = train(
train_texts,
train_labels,
dev_texts,
dev_labels,
{"nr_hidden": nr_hidden, "max_length": max_length, "nr_class": 1},
{"dropout": dropout, "lr": learn_rate},
{},
nb_epoch=nb_epoch,
batch_size=batch_size,
)
weights = lstm.get_weights()
if model_dir is not None:
with (model_dir / 'model').open('wb') as file_:
with (model_dir / "model").open("wb") as file_:
pickle.dump(weights[1:], file_)
with (model_dir / 'config.json').open('w') as file_:
with (model_dir / "config.json").open("w") as file_:
file_.write(lstm.to_json())
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -15,14 +15,15 @@ import spacy
TEXTS = [
'Net income was $9.4 million compared to the prior year of $2.7 million.',
'Revenue exceeded twelve billion dollars, with a loss of $1b.',
"Net income was $9.4 million compared to the prior year of $2.7 million.",
"Revenue exceeded twelve billion dollars, with a loss of $1b.",
]
@plac.annotations(
model=("Model to load (needs parser and NER)", "positional", None, str))
def main(model='en_core_web_sm'):
model=("Model to load (needs parser and NER)", "positional", None, str)
)
def main(model="en_core_web_sm"):
nlp = spacy.load(model)
print("Loaded model '%s'" % model)
print("Processing %d texts" % len(TEXTS))
@ -31,7 +32,7 @@ def main(model='en_core_web_sm'):
doc = nlp(text)
relations = extract_currency_relations(doc)
for r1, r2 in relations:
print('{:<10}\t{}\t{}'.format(r1.text, r2.ent_type_, r2.text))
print("{:<10}\t{}\t{}".format(r1.text, r2.ent_type_, r2.text))
def extract_currency_relations(doc):
@ -41,18 +42,18 @@ def extract_currency_relations(doc):
span.merge()
relations = []
for money in filter(lambda w: w.ent_type_ == 'MONEY', doc):
if money.dep_ in ('attr', 'dobj'):
subject = [w for w in money.head.lefts if w.dep_ == 'nsubj']
for money in filter(lambda w: w.ent_type_ == "MONEY", doc):
if money.dep_ in ("attr", "dobj"):
subject = [w for w in money.head.lefts if w.dep_ == "nsubj"]
if subject:
subject = subject[0]
relations.append((subject, money))
elif money.dep_ == 'pobj' and money.head.dep_ == 'prep':
elif money.dep_ == "pobj" and money.head.dep_ == "prep":
relations.append((money.head.head, money))
return relations
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -24,37 +24,39 @@ import plac
import spacy
@plac.annotations(
model=("Model to load", "positional", None, str))
def main(model='en_core_web_sm'):
@plac.annotations(model=("Model to load", "positional", None, str))
def main(model="en_core_web_sm"):
nlp = spacy.load(model)
print("Loaded model '%s'" % model)
doc = nlp("displaCy uses CSS and JavaScript to show you how computers "
"understand language")
doc = nlp(
"displaCy uses CSS and JavaScript to show you how computers "
"understand language"
)
# The easiest way is to find the head of the subtree you want, and then use
# the `.subtree`, `.children`, `.lefts` and `.rights` iterators. `.subtree`
# is the one that does what you're asking for most directly:
for word in doc:
if word.dep_ in ('xcomp', 'ccomp'):
print(''.join(w.text_with_ws for w in word.subtree))
if word.dep_ in ("xcomp", "ccomp"):
print("".join(w.text_with_ws for w in word.subtree))
# It'd probably be better for `word.subtree` to return a `Span` object
# instead of a generator over the tokens. If you want the `Span` you can
# get it via the `.right_edge` and `.left_edge` properties. The `Span`
# object is nice because you can easily get a vector, merge it, etc.
for word in doc:
if word.dep_ in ('xcomp', 'ccomp'):
if word.dep_ in ("xcomp", "ccomp"):
subtree_span = doc[word.left_edge.i : word.right_edge.i + 1]
print(subtree_span.text, '|', subtree_span.root.text)
print(subtree_span.text, "|", subtree_span.root.text)
# You might also want to select a head, and then select a start and end
# position by walking along its children. You could then take the
# `.left_edge` and `.right_edge` of those tokens, and use it to calculate
# a span.
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -32,7 +32,7 @@ def set_keras_backend(backend):
K.set_session(K.tf.Session(config=cfg))
K.clear_session()
set_keras_backend("tensorflow")
set_keras_backend("tensorflow")
def train(train_loc, dev_loc, shape, settings):
@ -42,7 +42,7 @@ def train(train_loc, dev_loc, shape, settings):
print("Loading spaCy")
nlp = spacy.load('en_vectors_web_lg')
assert nlp.path is not None
print("Processing texts...")
train_X = create_dataset(nlp, train_texts1, train_texts2, 100, shape[0])
dev_X = create_dataset(nlp, dev_texts1, dev_texts2, 100, shape[0])
@ -57,7 +57,7 @@ def train(train_loc, dev_loc, shape, settings):
validation_data = (dev_X, dev_labels),
epochs = settings['nr_epoch'],
batch_size = settings['batch_size'])
if not (nlp.path / 'similarity').exists():
(nlp.path / 'similarity').mkdir()
print("Saving to", nlp.path / 'similarity')
@ -74,7 +74,7 @@ def evaluate(dev_loc, shape):
dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc)
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(KerasSimilarityShim.load(nlp.path / 'similarity', nlp, shape[0]))
total = 0.
correct = 0.
for text1, text2, label in zip(dev_texts1, dev_texts2, dev_labels):
@ -119,33 +119,33 @@ def read_snli(path):
def create_dataset(nlp, texts, hypotheses, num_unk, max_length):
sents = texts + hypotheses
sents_as_ids = []
for sent in sents:
doc = nlp(sent)
word_ids = []
for i, token in enumerate(doc):
# skip odd spaces from tokenizer
if token.has_vector and token.vector_norm == 0:
continue
if i > max_length:
break
if token.has_vector:
word_ids.append(token.rank + num_unk + 1)
else:
# if we don't have a vector, pick an OOV entry
word_ids.append(token.rank % num_unk + 1)
word_ids.append(token.rank % num_unk + 1)
# there must be a simpler way of generating padded arrays from lists...
word_id_vec = np.zeros((max_length), dtype='int')
clipped_len = min(max_length, len(word_ids))
word_id_vec[:clipped_len] = word_ids[:clipped_len]
sents_as_ids.append(word_id_vec)
return [np.array(sents_as_ids[:len(texts)]), np.array(sents_as_ids[len(texts):])]
@ -169,7 +169,7 @@ def main(mode, train_loc, dev_loc,
batch_size = 1024,
nr_epoch = 10,
entail_dir="both"):
shape = (max_length, nr_hidden, 3)
settings = {
'lr': learn_rate,

View File

@ -10,19 +10,19 @@ def build_model(vectors, shape, settings):
input1 = layers.Input(shape=(max_length,), dtype='int32', name='words1')
input2 = layers.Input(shape=(max_length,), dtype='int32', name='words2')
# embeddings (projected)
embed = create_embedding(vectors, max_length, nr_hidden)
a = embed(input1)
b = embed(input2)
# step 1: attend
F = create_feedforward(nr_hidden)
att_weights = layers.dot([F(a), F(b)], axes=-1)
G = create_feedforward(nr_hidden)
if settings['entail_dir'] == 'both':
norm_weights_a = layers.Lambda(normalizer(1))(att_weights)
norm_weights_b = layers.Lambda(normalizer(2))(att_weights)
@ -55,18 +55,18 @@ def build_model(vectors, shape, settings):
v1 = layers.TimeDistributed(G)(comp1)
v1_sum = layers.Lambda(sum_word)(v1)
concat = v1_sum
H = create_feedforward(nr_hidden)
out = H(concat)
out = layers.Dense(nr_class, activation='softmax')(out)
model = Model([input1, input2], out)
model.compile(
optimizer=optimizers.Adam(lr=settings['lr']),
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
@ -78,7 +78,7 @@ def create_embedding(vectors, max_length, projected_dim):
input_length=max_length,
weights=[vectors],
trainable=False),
layers.TimeDistributed(
layers.Dense(projected_dim,
activation=None,

View File

@ -19,39 +19,40 @@ from pathlib import Path
@plac.annotations(
output_dir=("Output directory for saved HTML", "positional", None, Path))
output_dir=("Output directory for saved HTML", "positional", None, Path)
)
def main(output_dir=None):
nlp = English() # start off with blank English class
Doc.set_extension('overlap', method=overlap_tokens)
doc1 = nlp(u"Peach emoji is where it has always been.")
doc2 = nlp(u"Peach is the superior emoji.")
Doc.set_extension("overlap", method=overlap_tokens)
doc1 = nlp("Peach emoji is where it has always been.")
doc2 = nlp("Peach is the superior emoji.")
print("Text 1:", doc1.text)
print("Text 2:", doc2.text)
print("Overlapping tokens:", doc1._.overlap(doc2))
Doc.set_extension('to_html', method=to_html)
doc = nlp(u"This is a sentence about Apple.")
Doc.set_extension("to_html", method=to_html)
doc = nlp("This is a sentence about Apple.")
# add entity manually for demo purposes, to make it work without a model
doc.ents = [Span(doc, 5, 6, label=nlp.vocab.strings['ORG'])]
doc.ents = [Span(doc, 5, 6, label=nlp.vocab.strings["ORG"])]
print("Text:", doc.text)
doc._.to_html(output=output_dir, style='ent')
doc._.to_html(output=output_dir, style="ent")
def to_html(doc, output='/tmp', style='dep'):
def to_html(doc, output="/tmp", style="dep"):
"""Doc method extension for saving the current state as a displaCy
visualization.
"""
# generate filename from first six non-punct tokens
file_name = '-'.join([w.text for w in doc[:6] if not w.is_punct]) + '.html'
file_name = "-".join([w.text for w in doc[:6] if not w.is_punct]) + ".html"
html = displacy.render(doc, style=style, page=True) # render markup
if output is not None:
output_path = Path(output)
if not output_path.exists():
output_path.mkdir()
output_file = Path(output) / file_name
output_file.open('w', encoding='utf-8').write(html) # save to file
print('Saved HTML to {}'.format(output_file))
output_file.open("w", encoding="utf-8").write(html) # save to file
print("Saved HTML to {}".format(output_file))
else:
print(html)
@ -67,7 +68,7 @@ def overlap_tokens(doc, other_doc):
return overlap
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -25,15 +25,19 @@ def main():
# and no model or pre-defined pipeline loaded.
nlp = English()
rest_countries = RESTCountriesComponent(nlp) # initialise component
nlp.add_pipe(rest_countries) # add it to the pipeline
doc = nlp(u"Some text about Colombia and the Czech Republic")
print('Pipeline', nlp.pipe_names) # pipeline contains component name
print('Doc has countries', doc._.has_country) # Doc contains countries
nlp.add_pipe(rest_countries) # add it to the pipeline
doc = nlp("Some text about Colombia and the Czech Republic")
print("Pipeline", nlp.pipe_names) # pipeline contains component name
print("Doc has countries", doc._.has_country) # Doc contains countries
for token in doc:
if token._.is_country:
print(token.text, token._.country_capital, token._.country_latlng,
token._.country_flag) # country data
print('Entities', [(e.text, e.label_) for e in doc.ents]) # entities
print(
token.text,
token._.country_capital,
token._.country_latlng,
token._.country_flag,
) # country data
print("Entities", [(e.text, e.label_) for e in doc.ents]) # entities
class RESTCountriesComponent(object):
@ -41,42 +45,42 @@ class RESTCountriesComponent(object):
the REST Countries API, merges country names into one token, assigns entity
labels and sets attributes on country tokens.
"""
name = 'rest_countries' # component name, will show up in the pipeline
def __init__(self, nlp, label='GPE'):
name = "rest_countries" # component name, will show up in the pipeline
def __init__(self, nlp, label="GPE"):
"""Initialise the pipeline component. The shared nlp instance is used
to initialise the matcher with the shared vocab, get the label ID and
generate Doc objects as phrase match patterns.
"""
# Make request once on initialisation and store the data
r = requests.get('https://restcountries.eu/rest/v2/all')
r = requests.get("https://restcountries.eu/rest/v2/all")
r.raise_for_status() # make sure requests raises an error if it fails
countries = r.json()
# Convert API response to dict keyed by country name for easy lookup
# This could also be extended using the alternative and foreign language
# names provided by the API
self.countries = {c['name']: c for c in countries}
self.countries = {c["name"]: c for c in countries}
self.label = nlp.vocab.strings[label] # get entity label ID
# Set up the PhraseMatcher with Doc patterns for each country name
patterns = [nlp(c) for c in self.countries.keys()]
self.matcher = PhraseMatcher(nlp.vocab)
self.matcher.add('COUNTRIES', None, *patterns)
self.matcher.add("COUNTRIES", None, *patterns)
# Register attribute on the Token. We'll be overwriting this based on
# the matches, so we're only setting a default value, not a getter.
# If no default value is set, it defaults to None.
Token.set_extension('is_country', default=False)
Token.set_extension('country_capital', default=False)
Token.set_extension('country_latlng', default=False)
Token.set_extension('country_flag', default=False)
Token.set_extension("is_country", default=False)
Token.set_extension("country_capital", default=False)
Token.set_extension("country_latlng", default=False)
Token.set_extension("country_flag", default=False)
# Register attributes on Doc and Span via a getter that checks if one of
# the contained tokens is set to is_country == True.
Doc.set_extension('has_country', getter=self.has_country)
Span.set_extension('has_country', getter=self.has_country)
Doc.set_extension("has_country", getter=self.has_country)
Span.set_extension("has_country", getter=self.has_country)
def __call__(self, doc):
"""Apply the pipeline component on a Doc object and modify it if matches
@ -93,10 +97,10 @@ class RESTCountriesComponent(object):
# Can be extended with other data returned by the API, like
# currencies, country code, flag, calling code etc.
for token in entity:
token._.set('is_country', True)
token._.set('country_capital', self.countries[entity.text]['capital'])
token._.set('country_latlng', self.countries[entity.text]['latlng'])
token._.set('country_flag', self.countries[entity.text]['flag'])
token._.set("is_country", True)
token._.set("country_capital", self.countries[entity.text]["capital"])
token._.set("country_latlng", self.countries[entity.text]["latlng"])
token._.set("country_flag", self.countries[entity.text]["flag"])
# Overwrite doc.ents and add entity be careful not to replace!
doc.ents = list(doc.ents) + [entity]
for span in spans:
@ -111,10 +115,10 @@ class RESTCountriesComponent(object):
is a country. Since the getter is only called when we access the
attribute, we can refer to the Token's 'is_country' attribute here,
which is already set in the processing step."""
return any([t._.get('is_country') for t in tokens])
return any([t._.get("is_country") for t in tokens])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -20,23 +20,24 @@ from spacy.tokens import Doc, Span, Token
@plac.annotations(
text=("Text to process", "positional", None, str),
companies=("Names of technology companies", "positional", None, str))
companies=("Names of technology companies", "positional", None, str),
)
def main(text="Alphabet Inc. is the company behind Google.", *companies):
# For simplicity, we start off with only the blank English Language class
# and no model or pre-defined pipeline loaded.
nlp = English()
if not companies: # set default companies if none are set via args
companies = ['Alphabet Inc.', 'Google', 'Netflix', 'Apple'] # etc.
companies = ["Alphabet Inc.", "Google", "Netflix", "Apple"] # etc.
component = TechCompanyRecognizer(nlp, companies) # initialise component
nlp.add_pipe(component, last=True) # add last to the pipeline
doc = nlp(text)
print('Pipeline', nlp.pipe_names) # pipeline contains component name
print('Tokens', [t.text for t in doc]) # company names from the list are merged
print('Doc has_tech_org', doc._.has_tech_org) # Doc contains tech orgs
print('Token 0 is_tech_org', doc[0]._.is_tech_org) # "Alphabet Inc." is a tech org
print('Token 1 is_tech_org', doc[1]._.is_tech_org) # "is" is not
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all orgs are entities
print("Pipeline", nlp.pipe_names) # pipeline contains component name
print("Tokens", [t.text for t in doc]) # company names from the list are merged
print("Doc has_tech_org", doc._.has_tech_org) # Doc contains tech orgs
print("Token 0 is_tech_org", doc[0]._.is_tech_org) # "Alphabet Inc." is a tech org
print("Token 1 is_tech_org", doc[1]._.is_tech_org) # "is" is not
print("Entities", [(e.text, e.label_) for e in doc.ents]) # all orgs are entities
class TechCompanyRecognizer(object):
@ -45,9 +46,10 @@ class TechCompanyRecognizer(object):
labelled as ORG and their spans are merged into one token. Additionally,
._.has_tech_org and ._.is_tech_org is set on the Doc/Span and Token
respectively."""
name = 'tech_companies' # component name, will show up in the pipeline
def __init__(self, nlp, companies=tuple(), label='ORG'):
name = "tech_companies" # component name, will show up in the pipeline
def __init__(self, nlp, companies=tuple(), label="ORG"):
"""Initialise the pipeline component. The shared nlp instance is used
to initialise the matcher with the shared vocab, get the label ID and
generate Doc objects as phrase match patterns.
@ -58,16 +60,16 @@ class TechCompanyRecognizer(object):
# so even if the list of companies is long, it's very efficient
patterns = [nlp(org) for org in companies]
self.matcher = PhraseMatcher(nlp.vocab)
self.matcher.add('TECH_ORGS', None, *patterns)
self.matcher.add("TECH_ORGS", None, *patterns)
# Register attribute on the Token. We'll be overwriting this based on
# the matches, so we're only setting a default value, not a getter.
Token.set_extension('is_tech_org', default=False)
Token.set_extension("is_tech_org", default=False)
# Register attributes on Doc and Span via a getter that checks if one of
# the contained tokens is set to is_tech_org == True.
Doc.set_extension('has_tech_org', getter=self.has_tech_org)
Span.set_extension('has_tech_org', getter=self.has_tech_org)
Doc.set_extension("has_tech_org", getter=self.has_tech_org)
Span.set_extension("has_tech_org", getter=self.has_tech_org)
def __call__(self, doc):
"""Apply the pipeline component on a Doc object and modify it if matches
@ -82,7 +84,7 @@ class TechCompanyRecognizer(object):
spans.append(entity)
# Set custom attribute on each token of the entity
for token in entity:
token._.set('is_tech_org', True)
token._.set("is_tech_org", True)
# Overwrite doc.ents and add entity be careful not to replace!
doc.ents = list(doc.ents) + [entity]
for span in spans:
@ -97,10 +99,10 @@ class TechCompanyRecognizer(object):
is a tech org. Since the getter is only called when we access the
attribute, we can refer to the Token's 'is_tech_org' attribute here,
which is already set in the processing step."""
return any([t._.get('is_tech_org') for t in tokens])
return any([t._.get("is_tech_org") for t in tokens])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -1,4 +1,4 @@
'''Example of adding a pipeline component to prohibit sentence boundaries
"""Example of adding a pipeline component to prohibit sentence boundaries
before certain tokens.
What we do is write to the token.is_sent_start attribute, which
@ -10,16 +10,18 @@ should also improve the parse quality.
The specific example here is drawn from https://github.com/explosion/spaCy/issues/2627
Other versions of the model may not make the original mistake, so the specific
example might not be apt for future versions.
'''
"""
import plac
import spacy
def prevent_sentence_boundaries(doc):
for token in doc:
if not can_be_sentence_start(token):
token.is_sent_start = False
return doc
def can_be_sentence_start(token):
if token.i == 0:
return True
@ -32,17 +34,18 @@ def can_be_sentence_start(token):
else:
return False
def main():
nlp = spacy.load('en_core_web_lg')
nlp = spacy.load("en_core_web_lg")
raw_text = "Been here and I'm loving it."
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
print(sentences)
nlp.add_pipe(prevent_sentence_boundaries, before='parser')
nlp.add_pipe(prevent_sentence_boundaries, before="parser")
doc = nlp(raw_text)
sentences = [sent.string.strip() for sent in doc.sents]
print(sentences)
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -1,10 +1,11 @@
'''Demonstrate adding a rule-based component that forces some tokens to not
"""Demonstrate adding a rule-based component that forces some tokens to not
be entities, before the NER tagger is applied. This is used to hotfix the issue
in https://github.com/explosion/spaCy/issues/2870 , present as of spaCy v2.0.16.
'''
"""
import spacy
from spacy.attrs import ENT_IOB
def fix_space_tags(doc):
ent_iobs = doc.to_array([ENT_IOB])
for i, token in enumerate(doc):
@ -14,14 +15,16 @@ def fix_space_tags(doc):
doc.from_array([ENT_IOB], ent_iobs.reshape((len(doc), 1)))
return doc
def main():
nlp = spacy.load('en_core_web_sm')
text = u'''This is some crazy test where I dont need an Apple Watch to make things bug'''
doc = nlp(text)
print('Before', doc.ents)
nlp.add_pipe(fix_space_tags, name='fix-ner', before='ner')
doc = nlp(text)
print('After', doc.ents)
if __name__ == '__main__':
def main():
nlp = spacy.load("en_core_web_sm")
text = u"""This is some crazy test where I dont need an Apple Watch to make things bug"""
doc = nlp(text)
print("Before", doc.ents)
nlp.add_pipe(fix_space_tags, name="fix-ner", before="ner")
doc = nlp(text)
print("After", doc.ents)
if __name__ == "__main__":
main()

View File

@ -9,6 +9,7 @@ built-in dataset loader.
Compatible with: spaCy v2.0.0+
"""
from __future__ import print_function, unicode_literals
from toolz import partition_all
from pathlib import Path
from joblib import Parallel, delayed
@ -22,9 +23,9 @@ import spacy
model=("Model name (needs tagger)", "positional", None, str),
n_jobs=("Number of workers", "option", "n", int),
batch_size=("Batch-size for each process", "option", "b", int),
limit=("Limit of entries from the dataset", "option", "l", int))
def main(output_dir, model='en_core_web_sm', n_jobs=4, batch_size=1000,
limit=10000):
limit=("Limit of entries from the dataset", "option", "l", int),
)
def main(output_dir, model="en_core_web_sm", n_jobs=4, batch_size=1000, limit=10000):
nlp = spacy.load(model) # load spaCy model
print("Loaded model '%s'" % model)
if not output_dir.exists():
@ -37,42 +38,44 @@ def main(output_dir, model='en_core_web_sm', n_jobs=4, batch_size=1000,
partitions = partition_all(batch_size, texts)
executor = Parallel(n_jobs=n_jobs)
do = delayed(transform_texts)
tasks = (do(nlp, i, batch, output_dir)
for i, batch in enumerate(partitions))
tasks = (do(nlp, i, batch, output_dir) for i, batch in enumerate(partitions))
executor(tasks)
def transform_texts(nlp, batch_id, texts, output_dir):
print(nlp.pipe_names)
out_path = Path(output_dir) / ('%d.txt' % batch_id)
out_path = Path(output_dir) / ("%d.txt" % batch_id)
if out_path.exists(): # return None in case same batch is called again
return None
print('Processing batch', batch_id)
with out_path.open('w', encoding='utf8') as f:
print("Processing batch", batch_id)
with out_path.open("w", encoding="utf8") as f:
for doc in nlp.pipe(texts):
f.write(' '.join(represent_word(w) for w in doc if not w.is_space))
f.write('\n')
print('Saved {} texts to {}.txt'.format(len(texts), batch_id))
f.write(" ".join(represent_word(w) for w in doc if not w.is_space))
f.write("\n")
print("Saved {} texts to {}.txt".format(len(texts), batch_id))
def represent_word(word):
text = word.text
# True-case, i.e. try to normalize sentence-initial capitals.
# Only do this if the lower-cased form is more probable.
if text.istitle() and is_sent_begin(word) \
and word.prob < word.doc.vocab[text.lower()].prob:
if (
text.istitle()
and is_sent_begin(word)
and word.prob < word.doc.vocab[text.lower()].prob
):
text = text.lower()
return text + '|' + word.tag_
return text + "|" + word.tag_
def is_sent_begin(word):
if word.i == 0:
return True
elif word.i >= 2 and word.nbor(-1).text in ('.', '!', '?', '...'):
elif word.i >= 2 and word.nbor(-1).text in (".", "!", "?", "..."):
return True
else:
return False
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -1,6 +1,6 @@
'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
"""Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
.conllu format for development data, allowing the official scorer to be used.
'''
"""
from __future__ import unicode_literals
import plac
import tqdm
@ -35,6 +35,7 @@ spacy.lang.ja.Japanese.Defaults.use_janome = False
random.seed(0)
numpy.random.seed(0)
def minibatch_by_words(items, size=5000):
random.shuffle(items)
if isinstance(size, int):
@ -59,21 +60,31 @@ def minibatch_by_words(items, size=5000):
else:
break
################
# Data reading #
################
space_re = re.compile('\s+')
def split_text(text):
return [space_re.sub(' ', par.strip()) for par in text.split('\n\n')]
space_re = re.compile("\s+")
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
max_doc_length=None, limit=None):
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
def split_text(text):
return [space_re.sub(" ", par.strip()) for par in text.split("\n\n")]
def read_data(
nlp,
conllu_file,
text_file,
raw_text=True,
oracle_segments=False,
max_doc_length=None,
limit=None,
):
"""Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
include Doc objects created using nlp.make_doc and then aligned against
the gold-standard sequences. If oracle_segments=True, include Doc objects
created from the gold-standard segments. At least one must be True.'''
created from the gold-standard segments. At least one must be True."""
if not raw_text and not oracle_segments:
raise ValueError("At least one of raw_text or oracle_segments must be True")
paragraphs = split_text(text_file.read())
@ -87,22 +98,21 @@ def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
for cs in cd:
sent = defaultdict(list)
for id_, word, lemma, pos, tag, morph, head, dep, _, space_after in cs:
if '.' in id_:
if "." in id_:
continue
if '-' in id_:
if "-" in id_:
continue
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
sent['words'].append(word)
sent['tags'].append(tag)
sent['heads'].append(head)
sent['deps'].append('ROOT' if dep == 'root' else dep)
sent['spaces'].append(space_after == '_')
sent['entities'] = ['-'] * len(sent['words'])
sent['heads'], sent['deps'] = projectivize(sent['heads'],
sent['deps'])
id_ = int(id_) - 1
head = int(head) - 1 if head != "0" else id_
sent["words"].append(word)
sent["tags"].append(tag)
sent["heads"].append(head)
sent["deps"].append("ROOT" if dep == "root" else dep)
sent["spaces"].append(space_after == "_")
sent["entities"] = ["-"] * len(sent["words"])
sent["heads"], sent["deps"] = projectivize(sent["heads"], sent["deps"])
if oracle_segments:
docs.append(Doc(nlp.vocab, words=sent['words'], spaces=sent['spaces']))
docs.append(Doc(nlp.vocab, words=sent["words"], spaces=sent["spaces"]))
golds.append(GoldParse(docs[-1], **sent))
sent_annots.append(sent)
@ -128,18 +138,18 @@ def read_conllu(file_):
sent = []
doc = []
for line in file_:
if line.startswith('# newdoc'):
if line.startswith("# newdoc"):
if doc:
docs.append(doc)
doc = []
elif line.startswith('#'):
elif line.startswith("#"):
continue
elif not line.strip():
if sent:
doc.append(sent)
sent = []
else:
sent.append(list(line.strip().split('\t')))
sent.append(list(line.strip().split("\t")))
if len(sent[-1]) != 10:
print(repr(line))
raise ValueError
@ -154,25 +164,29 @@ def _make_gold(nlp, text, sent_annots):
# Flatten the conll annotations, and adjust the head indices
flat = defaultdict(list)
for sent in sent_annots:
flat['heads'].extend(len(flat['words'])+head for head in sent['heads'])
for field in ['words', 'tags', 'deps', 'entities', 'spaces']:
flat["heads"].extend(len(flat["words"]) + head for head in sent["heads"])
for field in ["words", "tags", "deps", "entities", "spaces"]:
flat[field].extend(sent[field])
# Construct text if necessary
assert len(flat['words']) == len(flat['spaces'])
assert len(flat["words"]) == len(flat["spaces"])
if text is None:
text = ''.join(word+' '*space for word, space in zip(flat['words'], flat['spaces']))
text = "".join(
word + " " * space for word, space in zip(flat["words"], flat["spaces"])
)
doc = nlp.make_doc(text)
flat.pop('spaces')
flat.pop("spaces")
gold = GoldParse(doc, **flat)
return doc, gold
#############################
# Data transforms for spaCy #
#############################
def golds_to_gold_tuples(docs, golds):
'''Get out the annoying 'tuples' format used by begin_training, given the
GoldParse objects.'''
"""Get out the annoying 'tuples' format used by begin_training, given the
GoldParse objects."""
tuples = []
for doc, gold in zip(docs, golds):
text = doc.text
@ -186,15 +200,16 @@ def golds_to_gold_tuples(docs, golds):
# Evaluation #
##############
def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None):
with text_loc.open('r', encoding='utf8') as text_file:
with text_loc.open("r", encoding="utf8") as text_file:
texts = split_text(text_file.read())
docs = list(nlp.pipe(texts))
with sys_loc.open('w', encoding='utf8') as out_file:
with sys_loc.open("w", encoding="utf8") as out_file:
write_conllu(docs, out_file)
with gold_loc.open('r', encoding='utf8') as gold_file:
with gold_loc.open("r", encoding="utf8") as gold_file:
gold_ud = conll17_ud_eval.load_conllu(gold_file)
with sys_loc.open('r', encoding='utf8') as sys_file:
with sys_loc.open("r", encoding="utf8") as sys_file:
sys_ud = conll17_ud_eval.load_conllu(sys_file)
scores = conll17_ud_eval.evaluate(gold_ud, sys_ud)
return scores
@ -202,10 +217,10 @@ def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None):
def write_conllu(docs, file_):
merger = Matcher(docs[0].vocab)
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}])
for i, doc in enumerate(docs):
matches = merger(doc)
spans = [doc[start:end+1] for _, start, end in matches]
spans = [doc[start : end + 1] for _, start, end in matches]
offsets = [(span.start_char, span.end_char) for span in spans]
for start_char, end_char in offsets:
doc.merge(start_char, end_char)
@ -214,58 +229,73 @@ def write_conllu(docs, file_):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
file_.write("# text = {text}\n".format(text=sent.text))
for k, token in enumerate(sent):
file_.write(token._.get_conllu_lines(k) + '\n')
file_.write('\n')
file_.write(token._.get_conllu_lines(k) + "\n")
file_.write("\n")
def print_progress(itn, losses, ud_scores):
fields = {
'dep_loss': losses.get('parser', 0.0),
'tag_loss': losses.get('tagger', 0.0),
'words': ud_scores['Words'].f1 * 100,
'sents': ud_scores['Sentences'].f1 * 100,
'tags': ud_scores['XPOS'].f1 * 100,
'uas': ud_scores['UAS'].f1 * 100,
'las': ud_scores['LAS'].f1 * 100,
"dep_loss": losses.get("parser", 0.0),
"tag_loss": losses.get("tagger", 0.0),
"words": ud_scores["Words"].f1 * 100,
"sents": ud_scores["Sentences"].f1 * 100,
"tags": ud_scores["XPOS"].f1 * 100,
"uas": ud_scores["UAS"].f1 * 100,
"las": ud_scores["LAS"].f1 * 100,
}
header = ['Epoch', 'Loss', 'LAS', 'UAS', 'TAG', 'SENT', 'WORD']
header = ["Epoch", "Loss", "LAS", "UAS", "TAG", "SENT", "WORD"]
if itn == 0:
print('\t'.join(header))
tpl = '\t'.join((
'{:d}',
'{dep_loss:.1f}',
'{las:.1f}',
'{uas:.1f}',
'{tags:.1f}',
'{sents:.1f}',
'{words:.1f}',
))
print("\t".join(header))
tpl = "\t".join(
(
"{:d}",
"{dep_loss:.1f}",
"{las:.1f}",
"{uas:.1f}",
"{tags:.1f}",
"{sents:.1f}",
"{words:.1f}",
)
)
print(tpl.format(itn, **fields))
#def get_sent_conllu(sent, sent_id):
# def get_sent_conllu(sent, sent_id):
# lines = ["# sent_id = {sent_id}".format(sent_id=sent_id)]
def get_token_conllu(token, i):
if token._.begins_fused:
n = 1
while token.nbor(n)._.inside_fused:
n += 1
id_ = '%d-%d' % (i, i+n)
lines = [id_, token.text, '_', '_', '_', '_', '_', '_', '_', '_']
id_ = "%d-%d" % (i, i + n)
lines = [id_, token.text, "_", "_", "_", "_", "_", "_", "_", "_"]
else:
lines = []
if token.head.i == token.i:
head = 0
else:
head = i + (token.head.i - token.i) + 1
fields = [str(i+1), token.text, token.lemma_, token.pos_, token.tag_, '_',
str(head), token.dep_.lower(), '_', '_']
lines.append('\t'.join(fields))
return '\n'.join(lines)
fields = [
str(i + 1),
token.text,
token.lemma_,
token.pos_,
token.tag_,
"_",
str(head),
token.dep_.lower(),
"_",
"_",
]
lines.append("\t".join(fields))
return "\n".join(lines)
Token.set_extension('get_conllu_lines', method=get_token_conllu)
Token.set_extension('begins_fused', default=False)
Token.set_extension('inside_fused', default=False)
Token.set_extension("get_conllu_lines", method=get_token_conllu)
Token.set_extension("begins_fused", default=False)
Token.set_extension("inside_fused", default=False)
##################
@ -274,31 +304,32 @@ Token.set_extension('inside_fused', default=False)
def load_nlp(corpus, config):
lang = corpus.split('_')[0]
lang = corpus.split("_")[0]
nlp = spacy.blank(lang)
if config.vectors:
nlp.vocab.from_disk(config.vectors / 'vocab')
nlp.vocab.from_disk(config.vectors / "vocab")
return nlp
def initialize_pipeline(nlp, docs, golds, config):
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.add_pipe(nlp.create_pipe("parser"))
if config.multitask_tag:
nlp.parser.add_multitask_objective('tag')
nlp.parser.add_multitask_objective("tag")
if config.multitask_sent:
nlp.parser.add_multitask_objective('sent_start')
nlp.parser.moves.add_action(2, 'subtok')
nlp.add_pipe(nlp.create_pipe('tagger'))
nlp.parser.add_multitask_objective("sent_start")
nlp.parser.moves.add_action(2, "subtok")
nlp.add_pipe(nlp.create_pipe("tagger"))
for gold in golds:
for tag in gold.tags:
if tag is not None:
nlp.tagger.add_label(tag)
# Replace labels that didn't make the frequency cutoff
actions = set(nlp.parser.labels)
label_set = set([act.split('-')[1] for act in actions if '-' in act])
label_set = set([act.split("-")[1] for act in actions if "-" in act])
for gold in golds:
for i, label in enumerate(gold.labels):
if label is not None and label not in label_set:
gold.labels[i] = label.split('||')[0]
gold.labels[i] = label.split("||")[0]
return nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
@ -306,6 +337,7 @@ def initialize_pipeline(nlp, docs, golds, config):
# Command line helpers #
########################
@attr.s
class Config(object):
vectors = attr.ib(default=None)
@ -318,7 +350,7 @@ class Config(object):
@classmethod
def load(cls, loc):
with Path(loc).open('r', encoding='utf8') as file_:
with Path(loc).open("r", encoding="utf8") as file_:
cfg = json.load(file_)
return cls(**cfg)
@ -331,32 +363,36 @@ class Dataset(object):
self.text = None
for file_path in self.path.iterdir():
name = file_path.parts[-1]
if section in name and name.endswith('conllu'):
if section in name and name.endswith("conllu"):
self.conllu = file_path
elif section in name and name.endswith('txt'):
elif section in name and name.endswith("txt"):
self.text = file_path
if self.conllu is None:
msg = "Could not find .txt file in {path} for {section}"
raise IOError(msg.format(section=section, path=path))
if self.text is None:
msg = "Could not find .txt file in {path} for {section}"
self.lang = self.conllu.parts[-1].split('-')[0].split('_')[0]
self.lang = self.conllu.parts[-1].split("-")[0].split("_")[0]
class TreebankPaths(object):
def __init__(self, ud_path, treebank, **cfg):
self.train = Dataset(ud_path / treebank, 'train')
self.dev = Dataset(ud_path / treebank, 'dev')
self.train = Dataset(ud_path / treebank, "train")
self.dev = Dataset(ud_path / treebank, "dev")
self.lang = self.train.lang
@plac.annotations(
ud_dir=("Path to Universal Dependencies corpus", "positional", None, Path),
corpus=("UD corpus to train and evaluate on, e.g. en, es_ancora, etc",
"positional", None, str),
corpus=(
"UD corpus to train and evaluate on, e.g. en, es_ancora, etc",
"positional",
None,
str,
),
parses_dir=("Directory to write the development parses", "positional", None, Path),
config=("Path to json formatted config file", "positional", None, Config.load),
limit=("Size limit", "option", "n", int)
limit=("Size limit", "option", "n", int),
)
def main(ud_dir, parses_dir, config, corpus, limit=0):
paths = TreebankPaths(ud_dir, corpus)
@ -365,8 +401,13 @@ def main(ud_dir, parses_dir, config, corpus, limit=0):
print("Train and evaluate", corpus, "using lang", paths.lang)
nlp = load_nlp(paths.lang, config)
docs, golds = read_data(nlp, paths.train.conllu.open(), paths.train.text.open(),
max_doc_length=config.max_doc_length, limit=limit)
docs, golds = read_data(
nlp,
paths.train.conllu.open(),
paths.train.text.open(),
max_doc_length=config.max_doc_length,
limit=limit,
)
optimizer = initialize_pipeline(nlp, docs, golds, config)
@ -379,14 +420,19 @@ def main(ud_dir, parses_dir, config, corpus, limit=0):
for batch in batches:
batch_docs, batch_gold = zip(*batch)
pbar.update(sum(len(doc) for doc in batch_docs))
nlp.update(batch_docs, batch_gold, sgd=optimizer,
drop=config.dropout, losses=losses)
out_path = parses_dir / corpus / 'epoch-{i}.conllu'.format(i=i)
nlp.update(
batch_docs,
batch_gold,
sgd=optimizer,
drop=config.dropout,
losses=losses,
)
out_path = parses_dir / corpus / "epoch-{i}.conllu".format(i=i)
with nlp.use_params(optimizer.averages):
scores = evaluate(nlp, paths.dev.text, paths.dev.conllu, out_path)
print_progress(i, losses, scores)
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -1,4 +1,4 @@
'''This example shows how to add a multi-task objective that is trained
"""This example shows how to add a multi-task objective that is trained
alongside the entity recognizer. This is an alternative to adding features
to the model.
@ -19,7 +19,7 @@ The specific example here is not necessarily a good idea --- but it shows
how an arbitrary objective function for some word can be used.
Developed and tested for spaCy 2.0.6
'''
"""
import random
import plac
import spacy
@ -30,30 +30,29 @@ random.seed(0)
PWD = os.path.dirname(__file__)
TRAIN_DATA = list(read_json_file(os.path.join(PWD, 'training-data.json')))
TRAIN_DATA = list(read_json_file(os.path.join(PWD, "training-data.json")))
def get_position_label(i, words, tags, heads, labels, ents):
'''Return labels indicating the position of the word in the document.
'''
"""Return labels indicating the position of the word in the document.
"""
if len(words) < 20:
return 'short-doc'
return "short-doc"
elif i == 0:
return 'first-word'
return "first-word"
elif i < 10:
return 'early-word'
return "early-word"
elif i < 20:
return 'mid-word'
elif i == len(words)-1:
return 'last-word'
return "mid-word"
elif i == len(words) - 1:
return "last-word"
else:
return 'late-word'
return "late-word"
def main(n_iter=10):
nlp = spacy.blank('en')
ner = nlp.create_pipe('ner')
nlp = spacy.blank("en")
ner = nlp.create_pipe("ner")
ner.add_multitask_objective(get_position_label)
nlp.add_pipe(ner)
@ -71,15 +70,16 @@ def main(n_iter=10):
[gold], # batch of annotations
drop=0.2, # dropout - make it harder to memorise data
sgd=optimizer, # callable to update weights
losses=losses)
print(losses.get('nn_labeller', 0.0), losses['ner'])
losses=losses,
)
print(losses.get("nn_labeller", 0.0), losses["ner"])
# test the trained model
for text, _ in TRAIN_DATA:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -1,4 +1,4 @@
'''This script is experimental.
"""This script is experimental.
Try pre-training the CNN component of the text categorizer using a cheap
language modelling-like objective. Specifically, we load pre-trained vectors
@ -12,7 +12,7 @@ To evaluate the technique, we're pre-training with the 50k texts from the IMDB
corpus, and then training with only 100 labels. Note that it's a bit dirty to
pre-train with the development data, but also not *so* terrible: we're not using
the development labels, after all --- only the unlabelled text.
'''
"""
import plac
import random
import spacy
@ -46,8 +46,8 @@ def load_textcat_data(limit=0):
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
eval_texts, eval_labels = zip(*eval_data)
cats = [{'POSITIVE': bool(y), 'NEGATIVE': not bool(y)} for y in labels]
eval_cats = [{'POSITIVE': bool(y), 'NEGATIVE': not bool(y)} for y in eval_labels]
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels]
return (texts, cats), (eval_texts, eval_cats)
@ -57,6 +57,7 @@ def prefer_gpu():
return False
else:
import cupy.random
cupy.random.seed(0)
return True
@ -68,7 +69,7 @@ def build_textcat_model(tok2vec, nr_class, width):
from thinc.misc import Residual, LayerNorm
from spacy._ml import logistic, zero_init
with Model.define_operators({'>>': chain}):
with Model.define_operators({">>": chain}):
model = (
tok2vec
>> flatten_add_lengths
@ -78,27 +79,35 @@ def build_textcat_model(tok2vec, nr_class, width):
model.tok2vec = tok2vec
return model
def block_gradients(model):
from thinc.api import wrap
def forward(X, drop=0.):
def forward(X, drop=0.0):
Y, _ = model.begin_update(X, drop=drop)
return Y, None
return wrap(forward, model)
def create_pipeline(width, embed_size, vectors_model):
print("Load vectors")
nlp = spacy.load(vectors_model)
print("Start training")
textcat = TextCategorizer(nlp.vocab,
labels=['POSITIVE', 'NEGATIVE'],
textcat = TextCategorizer(
nlp.vocab,
labels=["POSITIVE", "NEGATIVE"],
model=build_textcat_model(
Tok2Vec(width=width, embed_size=embed_size), 2, width))
Tok2Vec(width=width, embed_size=embed_size), 2, width
),
)
nlp.add_pipe(textcat)
return nlp
def train_tensorizer(nlp, texts, dropout, n_iter):
tensorizer = nlp.create_pipe('tensorizer')
tensorizer = nlp.create_pipe("tensorizer")
nlp.add_pipe(tensorizer)
optimizer = nlp.begin_training()
for i in range(n_iter):
@ -109,36 +118,43 @@ def train_tensorizer(nlp, texts, dropout, n_iter):
print(losses)
return optimizer
def train_textcat(nlp, n_texts, n_iter=10):
textcat = nlp.get_pipe('textcat')
textcat = nlp.get_pipe("textcat")
tok2vec_weights = textcat.model.tok2vec.to_bytes()
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
print("Using {} examples ({} training, {} evaluation)"
.format(n_texts, len(train_texts), len(dev_texts)))
train_data = list(zip(train_texts,
[{'cats': cats} for cats in train_cats]))
print(
"Using {} examples ({} training, {} evaluation)".format(
n_texts, len(train_texts), len(dev_texts)
)
)
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"]
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
textcat.model.tok2vec.from_bytes(tok2vec_weights)
print("Training the model...")
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
for i in range(n_iter):
losses = {'textcat': 0.0}
losses = {"textcat": 0.0}
# batch up the examples using spaCy's minibatch
batches = minibatch(tqdm.tqdm(train_data), size=2)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,
losses=losses)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
print('{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}' # print a simple table
.format(losses['textcat'], scores['textcat_p'],
scores['textcat_r'], scores['textcat_f']))
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
losses["textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
def evaluate_textcat(tokenizer, textcat, texts, cats):
@ -153,9 +169,9 @@ def evaluate_textcat(tokenizer, textcat, texts, cats):
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
@ -163,8 +179,7 @@ def evaluate_textcat(tokenizer, textcat, texts, cats):
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f_score = 2 * (precision * recall) / (precision + recall)
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
@plac.annotations(
@ -173,10 +188,16 @@ def evaluate_textcat(tokenizer, textcat, texts, cats):
pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
train_iters=("Number of iterations to pretrain", "option", "tn", int),
train_examples=("Number of labelled examples", "option", "eg", int),
vectors_model=("Name or path to vectors model to learn from")
vectors_model=("Name or path to vectors model to learn from"),
)
def main(width, embed_size, vectors_model,
pretrain_iters=30, train_iters=30, train_examples=1000):
def main(
width,
embed_size,
vectors_model,
pretrain_iters=30,
train_iters=30,
train_examples=1000,
):
random.seed(0)
numpy.random.seed(0)
use_gpu = prefer_gpu()
@ -190,5 +211,6 @@ def main(width, embed_size, vectors_model,
print("Train textcat")
train_textcat(nlp, train_examples, n_iter=train_iters)
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -29,73 +29,113 @@ from spacy.util import minibatch, compounding
# training data: texts, heads and dependency labels
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
TRAIN_DATA = [
("find a cafe with great wifi", {
'heads': [0, 2, 0, 5, 5, 2], # index of token head
'deps': ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE']
}),
("find a hotel near the beach", {
'heads': [0, 2, 0, 5, 5, 2],
'deps': ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE']
}),
("find me the closest gym that's open late", {
'heads': [0, 0, 4, 4, 0, 6, 4, 6, 6],
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME']
}),
("show me the cheapest store that sells flowers", {
'heads': [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store!
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT']
}),
("find a nice restaurant in london", {
'heads': [0, 3, 3, 0, 3, 3],
'deps': ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
}),
("show me the coolest hostel in berlin", {
'heads': [0, 0, 4, 4, 0, 4, 4],
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
}),
("find a good italian restaurant near work", {
'heads': [0, 4, 4, 4, 0, 4, 5],
'deps': ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION']
})
(
"find a cafe with great wifi",
{
"heads": [0, 2, 0, 5, 5, 2], # index of token head
"deps": ["ROOT", "-", "PLACE", "-", "QUALITY", "ATTRIBUTE"],
},
),
(
"find a hotel near the beach",
{
"heads": [0, 2, 0, 5, 5, 2],
"deps": ["ROOT", "-", "PLACE", "QUALITY", "-", "ATTRIBUTE"],
},
),
(
"find me the closest gym that's open late",
{
"heads": [0, 0, 4, 4, 0, 6, 4, 6, 6],
"deps": [
"ROOT",
"-",
"-",
"QUALITY",
"PLACE",
"-",
"-",
"ATTRIBUTE",
"TIME",
],
},
),
(
"show me the cheapest store that sells flowers",
{
"heads": [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store!
"deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "-", "PRODUCT"],
},
),
(
"find a nice restaurant in london",
{
"heads": [0, 3, 3, 0, 3, 3],
"deps": ["ROOT", "-", "QUALITY", "PLACE", "-", "LOCATION"],
},
),
(
"show me the coolest hostel in berlin",
{
"heads": [0, 0, 4, 4, 0, 4, 4],
"deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "LOCATION"],
},
),
(
"find a good italian restaurant near work",
{
"heads": [0, 4, 4, 4, 0, 4, 5],
"deps": [
"ROOT",
"-",
"QUALITY",
"ATTRIBUTE",
"PLACE",
"ATTRIBUTE",
"LOCATION",
],
},
),
]
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, output_dir=None, n_iter=15):
"""Load the model, set up the pipeline and train the parser."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# We'll use the built-in dependency parser class, but we want to create a
# fresh instance just in case.
if 'parser' in nlp.pipe_names:
nlp.remove_pipe('parser')
parser = nlp.create_pipe('parser')
if "parser" in nlp.pipe_names:
nlp.remove_pipe("parser")
parser = nlp.create_pipe("parser")
nlp.add_pipe(parser, first=True)
for text, annotations in TRAIN_DATA:
for dep in annotations.get('deps', []):
for dep in annotations.get("deps", []):
parser.add_label(dep)
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"]
with nlp.disable_pipes(*other_pipes): # only train parser
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, losses=losses)
print('Losses', losses)
print("Losses", losses)
# test the trained model
test_model(nlp)
@ -115,16 +155,18 @@ def main(model=None, output_dir=None, n_iter=15):
def test_model(nlp):
texts = ["find a hotel with good wifi",
"find me the cheapest gym near work",
"show me the best hotel in berlin"]
texts = [
"find a hotel with good wifi",
"find me the cheapest gym near work",
"show me the best hotel in berlin",
]
docs = nlp.pipe(texts)
for doc in docs:
print(doc.text)
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != "-"])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -20,51 +20,48 @@ from spacy.util import minibatch, compounding
# training data
TRAIN_DATA = [
('Who is Shaka Khan?', {
'entities': [(7, 17, 'PERSON')]
}),
('I like London and Berlin.', {
'entities': [(7, 13, 'LOC'), (18, 24, 'LOC')]
})
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
]
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, output_dir=None, n_iter=100):
"""Load the model, set up the pipeline and train the entity recognizer."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
if "ner" not in nlp.pipe_names:
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner, last=True)
# otherwise, get it so we can add labels
else:
ner = nlp.get_pipe('ner')
ner = nlp.get_pipe("ner")
# add labels
for _, annotations in TRAIN_DATA:
for ent in annotations.get('entities'):
for ent in annotations.get("entities"):
ner.add_label(ent[2])
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
@ -72,14 +69,15 @@ def main(model=None, output_dir=None, n_iter=100):
annotations, # batch of annotations
drop=0.5, # dropout - make it harder to memorise data
sgd=optimizer, # callable to update weights
losses=losses)
print('Losses', losses)
losses=losses,
)
print("Losses", losses)
# test the trained model
for text, _ in TRAIN_DATA:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
@ -94,11 +92,11 @@ def main(model=None, output_dir=None, n_iter=100):
nlp2 = spacy.load(output_dir)
for text, _ in TRAIN_DATA:
doc = nlp2(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -35,7 +35,7 @@ from spacy.util import minibatch, compounding
# new entity label
LABEL = 'ANIMAL'
LABEL = "ANIMAL"
# training data
# Note: If you're using an existing model, make sure to mix in examples of
@ -43,29 +43,21 @@ LABEL = 'ANIMAL'
# model might learn the new type, but "forget" what it previously knew.
# https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
TRAIN_DATA = [
("Horses are too tall and they pretend to care about your feelings", {
'entities': [(0, 6, 'ANIMAL')]
}),
("Do they bite?", {
'entities': []
}),
("horses are too tall and they pretend to care about your feelings", {
'entities': [(0, 6, 'ANIMAL')]
}),
("horses pretend to care about your feelings", {
'entities': [(0, 6, 'ANIMAL')]
}),
("they pretend to care about your feelings, those horses", {
'entities': [(48, 54, 'ANIMAL')]
}),
("horses?", {
'entities': [(0, 6, 'ANIMAL')]
})
(
"Horses are too tall and they pretend to care about your feelings",
{"entities": [(0, 6, "ANIMAL")]},
),
("Do they bite?", {"entities": []}),
(
"horses are too tall and they pretend to care about your feelings",
{"entities": [(0, 6, "ANIMAL")]},
),
("horses pretend to care about your feelings", {"entities": [(0, 6, "ANIMAL")]}),
(
"they pretend to care about your feelings, those horses",
{"entities": [(48, 54, "ANIMAL")]},
),
("horses?", {"entities": [(0, 6, "ANIMAL")]}),
]
@ -73,25 +65,26 @@ TRAIN_DATA = [
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
new_model_name=("New model name for model meta.", "option", "nm", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, new_model_name='animal', output_dir=None, n_iter=10):
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, new_model_name="animal", output_dir=None, n_iter=10):
"""Set up the pipeline and entity recognizer, and train the new entity."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# Add entity recognizer to model if it's not in the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
if "ner" not in nlp.pipe_names:
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)
# otherwise, get it, so we can add labels to it
else:
ner = nlp.get_pipe('ner')
ner = nlp.get_pipe("ner")
ner.add_label(LABEL) # add new entity label to entity recognizer
ner.add_label(LABEL) # add new entity label to entity recognizer
if model is None:
optimizer = nlp.begin_training()
else:
@ -100,21 +93,20 @@ def main(model=None, new_model_name='animal', output_dir=None, n_iter=10):
optimizer = nlp.entity.create_optimizer()
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
with nlp.disable_pipes(*other_pipes): # only train NER
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.35,
losses=losses)
print('Losses', losses)
nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses)
print("Losses", losses)
# test the trained model
test_text = 'Do you like horses?'
test_text = "Do you like horses?"
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
@ -125,7 +117,7 @@ def main(model=None, new_model_name='animal', output_dir=None, n_iter=10):
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.meta["name"] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
@ -137,5 +129,5 @@ def main(model=None, new_model_name='animal', output_dir=None, n_iter=10):
print(ent.label_, ent.text)
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -18,62 +18,69 @@ from spacy.util import minibatch, compounding
# training data
TRAIN_DATA = [
("They trade mortgage-backed securities.", {
'heads': [1, 1, 4, 4, 5, 1, 1],
'deps': ['nsubj', 'ROOT', 'compound', 'punct', 'nmod', 'dobj', 'punct']
}),
("I like London and Berlin.", {
'heads': [1, 1, 1, 2, 2, 1],
'deps': ['nsubj', 'ROOT', 'dobj', 'cc', 'conj', 'punct']
})
(
"They trade mortgage-backed securities.",
{
"heads": [1, 1, 4, 4, 5, 1, 1],
"deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
},
),
(
"I like London and Berlin.",
{
"heads": [1, 1, 1, 2, 2, 1],
"deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
},
),
]
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, output_dir=None, n_iter=10):
"""Load the model, set up the pipeline and train the parser."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# add the parser to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'parser' not in nlp.pipe_names:
parser = nlp.create_pipe('parser')
if "parser" not in nlp.pipe_names:
parser = nlp.create_pipe("parser")
nlp.add_pipe(parser, first=True)
# otherwise, get it, so we can add labels to it
else:
parser = nlp.get_pipe('parser')
parser = nlp.get_pipe("parser")
# add labels to the parser
for _, annotations in TRAIN_DATA:
for dep in annotations.get('deps', []):
for dep in annotations.get("deps", []):
parser.add_label(dep)
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "parser"]
with nlp.disable_pipes(*other_pipes): # only train parser
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, losses=losses)
print('Losses', losses)
print("Losses", losses)
# test the trained model
test_text = "I like securities."
doc = nlp(test_text)
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
# save model to output directory
if output_dir is not None:
@ -87,10 +94,10 @@ def main(model=None, output_dir=None, n_iter=10):
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc = nlp2(test_text)
print('Dependencies', [(t.text, t.dep_, t.head.text) for t in doc])
print("Dependencies", [(t.text, t.dep_, t.head.text) for t in doc])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# expected result:

View File

@ -25,11 +25,7 @@ from spacy.util import minibatch, compounding
# http://universaldependencies.github.io/docs/u/pos/index.html
# You may also specify morphological features for your tags, from the universal
# scheme.
TAG_MAP = {
'N': {'pos': 'NOUN'},
'V': {'pos': 'VERB'},
'J': {'pos': 'ADJ'}
}
TAG_MAP = {"N": {"pos": "NOUN"}, "V": {"pos": "VERB"}, "J": {"pos": "ADJ"}}
# Usually you'll read this in, of course. Data formats vary. Ensure your
# strings are unicode and that the number of tags assigned matches spaCy's
@ -37,16 +33,17 @@ TAG_MAP = {
# that specifies the gold-standard tokenization, e.g.:
# ("Eatblueham", {'words': ['Eat', 'blue', 'ham'] 'tags': ['V', 'J', 'N']})
TRAIN_DATA = [
("I like green eggs", {'tags': ['N', 'V', 'J', 'N']}),
("Eat blue ham", {'tags': ['V', 'J', 'N']})
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
("Eat blue ham", {"tags": ["V", "J", "N"]}),
]
@plac.annotations(
lang=("ISO Code of language to use", "option", "l", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(lang='en', output_dir=None, n_iter=25):
n_iter=("Number of training iterations", "option", "n", int),
)
def main(lang="en", output_dir=None, n_iter=25):
"""Create a new model, set up the pipeline and train the tagger. In order to
train the tagger with a custom tag map, we're creating a new Language
instance with a custom vocab.
@ -54,7 +51,7 @@ def main(lang='en', output_dir=None, n_iter=25):
nlp = spacy.blank(lang)
# add the tagger to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
tagger = nlp.create_pipe('tagger')
tagger = nlp.create_pipe("tagger")
# Add the tags. This needs to be done before you start training.
for tag, values in TAG_MAP.items():
tagger.add_label(tag, values)
@ -65,16 +62,16 @@ def main(lang='en', output_dir=None, n_iter=25):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, losses=losses)
print('Losses', losses)
print("Losses", losses)
# test the trained model
test_text = "I like blue eggs"
doc = nlp(test_text)
print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])
print("Tags", [(t.text, t.tag_, t.pos_) for t in doc])
# save model to output directory
if output_dir is not None:
@ -88,10 +85,10 @@ def main(lang='en', output_dir=None, n_iter=25):
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc = nlp2(test_text)
print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])
print("Tags", [(t.text, t.tag_, t.pos_) for t in doc])
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)
# Expected output:

View File

@ -23,55 +23,62 @@ from spacy.util import minibatch, compounding
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_texts=("Number of texts to train from", "option", "t", int),
n_iter=("Number of training iterations", "option", "n", int))
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, output_dir=None, n_iter=20, n_texts=2000):
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# add the text classifier to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'textcat' not in nlp.pipe_names:
textcat = nlp.create_pipe('textcat')
if "textcat" not in nlp.pipe_names:
textcat = nlp.create_pipe("textcat")
nlp.add_pipe(textcat, last=True)
# otherwise, get it, so we can add labels to it
else:
textcat = nlp.get_pipe('textcat')
textcat = nlp.get_pipe("textcat")
# add label to text classifier
textcat.add_label('POSITIVE')
textcat.add_label("POSITIVE")
# load the IMDB dataset
print("Loading IMDB data...")
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=n_texts)
print("Using {} examples ({} training, {} evaluation)"
.format(n_texts, len(train_texts), len(dev_texts)))
train_data = list(zip(train_texts,
[{'cats': cats} for cats in train_cats]))
print(
"Using {} examples ({} training, {} evaluation)".format(
n_texts, len(train_texts), len(dev_texts)
)
)
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"]
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
print("Training the model...")
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(train_data, size=compounding(4., 32., 1.001))
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,
losses=losses)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
print('{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}' # print a simple table
.format(losses['textcat'], scores['textcat_p'],
scores['textcat_r'], scores['textcat_f']))
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
losses["textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
# test the trained model
test_text = "This movie sucked"
@ -99,7 +106,7 @@ def load_data(limit=0, split=0.8):
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
cats = [{"POSITIVE": bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
@ -116,9 +123,9 @@ def evaluate(tokenizer, textcat, texts, cats):
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
@ -126,8 +133,8 @@ def evaluate(tokenizer, textcat, texts, cats):
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f_score = 2 * (precision * recall) / (precision + recall)
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -14,8 +14,13 @@ from spacy.language import Language
@plac.annotations(
vectors_loc=("Path to .vec file", "positional", None, str),
lang=("Optional language ID. If not set, blank Language() will be used.",
"positional", None, str))
lang=(
"Optional language ID. If not set, blank Language() will be used.",
"positional",
None,
str,
),
)
def main(vectors_loc, lang=None):
if lang is None:
nlp = Language()
@ -24,21 +29,21 @@ def main(vectors_loc, lang=None):
# save the model to disk and load it back later (models always need a
# "lang" setting). Use 'xx' for blank multi-language class.
nlp = spacy.blank(lang)
with open(vectors_loc, 'rb') as file_:
with open(vectors_loc, "rb") as file_:
header = file_.readline()
nr_row, nr_dim = header.split()
nlp.vocab.reset_vectors(width=int(nr_dim))
for line in file_:
line = line.rstrip().decode('utf8')
pieces = line.rsplit(' ', int(nr_dim))
line = line.rstrip().decode("utf8")
pieces = line.rsplit(" ", int(nr_dim))
word = pieces[0]
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f')
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype="f")
nlp.vocab.set_vector(word, vector) # add the vectors to the vocab
# test the vectors and similarity
text = 'class colspan'
text = "class colspan"
doc = nlp(text)
print(text, doc[0].similarity(doc[1]))
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)

View File

@ -14,26 +14,45 @@ import plac
import spacy
import tensorflow as tf
import tqdm
from tensorflow.contrib.tensorboard.plugins.projector import visualize_embeddings, ProjectorConfig
from tensorflow.contrib.tensorboard.plugins.projector import (
visualize_embeddings,
ProjectorConfig,
)
@plac.annotations(
vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str),
out_loc=("Path to output folder for tensorboard session data", "positional", None, str),
name=("Human readable name for tsv file and vectors tensor", "positional", None, str),
out_loc=(
"Path to output folder for tensorboard session data",
"positional",
None,
str,
),
name=(
"Human readable name for tsv file and vectors tensor",
"positional",
None,
str,
),
)
def main(vectors_loc, out_loc, name="spaCy_vectors"):
meta_file = "{}.tsv".format(name)
out_meta_file = path.join(out_loc, meta_file)
print('Loading spaCy vectors model: {}'.format(vectors_loc))
print("Loading spaCy vectors model: {}".format(vectors_loc))
model = spacy.load(vectors_loc)
print('Finding lexemes with vectors attached: {}'.format(vectors_loc))
strings_stream = tqdm.tqdm(model.vocab.strings, total=len(model.vocab.strings), leave=False)
print("Finding lexemes with vectors attached: {}".format(vectors_loc))
strings_stream = tqdm.tqdm(
model.vocab.strings, total=len(model.vocab.strings), leave=False
)
queries = [w for w in strings_stream if model.vocab.has_vector(w)]
vector_count = len(queries)
print('Building Tensorboard Projector metadata for ({}) vectors: {}'.format(vector_count, out_meta_file))
print(
"Building Tensorboard Projector metadata for ({}) vectors: {}".format(
vector_count, out_meta_file
)
)
# Store vector data in a tensorflow variable
tf_vectors_variable = numpy.zeros((vector_count, model.vocab.vectors.shape[1]))
@ -41,22 +60,26 @@ def main(vectors_loc, out_loc, name="spaCy_vectors"):
# Write a tab-separated file that contains information about the vectors for visualization
#
# Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata
with open(out_meta_file, 'wb') as file_metadata:
with open(out_meta_file, "wb") as file_metadata:
# Define columns in the first row
file_metadata.write("Text\tFrequency\n".encode('utf-8'))
file_metadata.write("Text\tFrequency\n".encode("utf-8"))
# Write out a row for each vector that we add to the tensorflow variable we created
vec_index = 0
for text in tqdm.tqdm(queries, total=len(queries), leave=False):
# https://github.com/tensorflow/tensorflow/issues/9094
text = '<Space>' if text.lstrip() == '' else text
text = "<Space>" if text.lstrip() == "" else text
lex = model.vocab[text]
# Store vector data and metadata
tf_vectors_variable[vec_index] = model.vocab.get_vector(text)
file_metadata.write("{}\t{}\n".format(text, math.exp(lex.prob) * vector_count).encode('utf-8'))
file_metadata.write(
"{}\t{}\n".format(text, math.exp(lex.prob) * vector_count).encode(
"utf-8"
)
)
vec_index += 1
print('Running Tensorflow Session...')
print("Running Tensorflow Session...")
sess = tf.InteractiveSession()
tf.Variable(tf_vectors_variable, trainable=False, name=name)
tf.global_variables_initializer().run()
@ -73,10 +96,10 @@ def main(vectors_loc, out_loc, name="spaCy_vectors"):
visualize_embeddings(writer, config)
# Save session and print run command to the output
print('Saving Tensorboard Session...')
saver.save(sess, path.join(out_loc, '{}.ckpt'.format(name)))
print('Done. Run `tensorboard --logdir={0}` to view in Tensorboard'.format(out_loc))
print("Saving Tensorboard Session...")
saver.save(sess, path.join(out_loc, "{}.ckpt".format(name)))
print("Done. Run `tensorboard --logdir={0}` to view in Tensorboard".format(out_loc))
if __name__ == '__main__':
if __name__ == "__main__":
plac.call(main)