* Docs coming together

This commit is contained in:
Matthew Honnibal 2014-08-29 01:59:23 +02:00
parent c282e6d5fb
commit 45a22d6b2c
5 changed files with 47 additions and 25 deletions

View File

@ -9,10 +9,14 @@ spaCy NLP Tokenizer and Lexicon
.. toctree::
:maxdepth: 3
guide/overview
guide/install
guide/overview.rst
guide/install.rst
api/index.rst
modules/index.rst
Source (GitHub)
----------------

View File

@ -4,4 +4,4 @@ cimport cython
cdef class English(Language):
cpdef int _split_one(self, unicode word)
cdef int _split_one(self, unicode word)

View File

@ -5,22 +5,21 @@ scheme in several important respects:
* Whitespace is added as tokens, except for single spaces. e.g.,
>>> [w.string for w in tokenize(u'\\nHello \\tThere')]
>>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')]
[u'\\n', u'Hello', u' ', u'\\t', u'There']
* Contractions are normalized, e.g.
>>> [w.string for w in u"isn't ain't won't he's")]
>>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")]
[u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"]
* Hyphenated words are split, with the hyphen preserved, e.g.:
>>> [w.string for w in tokenize(u'New York-based')]
>>> [w.string for w in EN.tokenize(u'New York-based')]
[u'New', u'York', u'-', u'based']
Other improvements:
* Full unicode support
* Email addresses, URLs, European-formatted dates and other numeric entities not
found in the PTB are tokenized correctly
* Heuristic handling of word-final periods (PTB expects sentence boundary detection
@ -81,6 +80,13 @@ CAN_PRT = NR_FLAGS; NR_FLAGS += 1
cdef class English(Language):
"""English tokenizer, tightly coupled to lexicon.
Attributes:
name (unicode): The two letter code used by Wikipedia for the language.
lexicon (Lexicon): The lexicon. Exposes the lookup method.
"""
def __cinit__(self, name):
flag_funcs = [0 for _ in range(NR_FLAGS)]
@ -110,7 +116,7 @@ cdef class English(Language):
Language.__init__(self, name, flag_funcs)
cpdef int _split_one(self, unicode word):
cdef int _split_one(self, unicode word):
cdef size_t length = len(word)
cdef int i = 0
if word.startswith("'s") or word.startswith("'S"):

View File

@ -4,21 +4,22 @@ from spacy.word cimport Lexeme
cdef class Lexicon:
cdef list string_features
cdef list flag_features
cpdef Lexeme lookup(self, unicode string)
cdef dict _dict
cpdef Lexeme lookup(self, unicode string)
cdef list _string_features
cdef list _flag_features
cdef class Language:
cdef object name
cdef unicode name
cdef dict cache
cpdef readonly Lexicon lexicon
cpdef list tokenize(self, unicode text)
cpdef Lexeme lookup(self, unicode text)
cdef list _tokenize(self, unicode string)
cpdef list _split(self, unicode string)
cpdef int _split_one(self, unicode word)
cdef list _split(self, unicode string)
cdef int _split_one(self, unicode word)

View File

@ -41,7 +41,7 @@ cdef class Language:
rules, words, probs, clusters, case_stats, tag_stats = lang_data
self.lexicon = Lexicon(words, probs, clusters, case_stats, tag_stats,
string_features, flag_features)
self.load_special_tokenization(rules)
self._load_special_tokenization(rules)
cpdef list tokenize(self, unicode string):
"""Tokenize a string.
@ -75,6 +75,17 @@ cdef class Language:
assert tokens
return tokens
cpdef Lexeme lookup(self, unicode string):
"""Retrieve (or create, if not found) a Lexeme for a string, and return it.
Args:
string (unicode): The string to be looked up. Must be unicode, not bytes.
Returns:
lexeme (Lexeme): A reference to a lexical type.
"""
return self.lexicon.lookup(string)
cdef list _tokenize(self, unicode string):
if string in self.cache:
return self.cache[string]
@ -85,7 +96,7 @@ cdef class Language:
self.cache[string] = lexemes
return lexemes
cpdef list _split(self, unicode string):
cdef list _split(self, unicode string):
"""Find how to split a contiguous span of non-space characters into substrings.
This method calls find_split repeatedly. Most languages will want to
@ -107,10 +118,10 @@ cdef class Language:
string = string[split:]
return substrings
cpdef int _split_one(self, unicode word):
cdef int _split_one(self, unicode word):
return len(word)
def load_special_tokenization(self, token_rules):
def _load_special_tokenization(self, token_rules):
'''Load special-case tokenization rules.
Loads special-case tokenization rules into the Language.cache cache,
@ -132,14 +143,14 @@ cdef class Language:
cdef class Lexicon:
def __cinit__(self, words, probs, clusters, case_stats, tag_stats,
string_features, flag_features):
self.flag_features = flag_features
self.string_features = string_features
self._flag_features = flag_features
self._string_features = string_features
self._dict = {}
cdef Lexeme word
for string in words:
word = Lexeme(string, probs.get(string, 0.0), clusters.get(string, 0),
case_stats.get(string, {}), tag_stats.get(string, {}),
self.string_features, self.flag_features)
self._string_features, self._flag_features)
self._dict[string] = word
cpdef Lexeme lookup(self, unicode string):
@ -155,7 +166,7 @@ cdef class Lexicon:
if string in self._dict:
return self._dict[string]
cdef Lexeme word = Lexeme(string, 0, 0, {}, {}, self.string_features,
self.flag_features)
cdef Lexeme word = Lexeme(string, 0, 0, {}, {}, self._string_features,
self._flag_features)
self._dict[string] = word
return word