mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-29 06:57:49 +03:00 
			
		
		
		
	cleanup
This commit is contained in:
		
							parent
							
								
									fa5c416db6
								
							
						
					
					
						commit
						45b29c4a5b
					
				|  | @ -78,7 +78,9 @@ def debug_model_cli( | |||
|     debug_model(config, nlp, model, print_settings=print_settings) | ||||
| 
 | ||||
| 
 | ||||
| def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None): | ||||
| def debug_model( | ||||
|     config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None | ||||
| ): | ||||
|     if not isinstance(model, Model): | ||||
|         msg.fail( | ||||
|             f"Requires a Thinc Model to be analysed, but found {type(model)} instead.", | ||||
|  | @ -97,7 +99,6 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, | |||
|     X = _get_docs() | ||||
|     # The output vector might differ from the official type of the output layer | ||||
|     with data_validation(False): | ||||
|         # msg.info(f"Could not initialize the model with dummy data - using the train_corpus.") | ||||
|         try: | ||||
|             train_corpus = dot_to_object(config, config["training"]["train_corpus"]) | ||||
|             nlp.begin_training(lambda: train_corpus(nlp)) | ||||
|  | @ -108,7 +109,10 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, | |||
|                 nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X]) | ||||
|                 msg.info("Initialized the model with dummy data.") | ||||
|             except: | ||||
|                 msg.fail("Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", exits=1) | ||||
|                 msg.fail( | ||||
|                     "Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", | ||||
|                     exits=1, | ||||
|                 ) | ||||
| 
 | ||||
|     if print_settings.get("print_after_init"): | ||||
|         msg.divider(f"STEP 1 - after initialization") | ||||
|  | @ -121,7 +125,6 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, | |||
|     tok2vec = None | ||||
|     if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener": | ||||
|         tok2vec = nlp.get_pipe("tok2vec") | ||||
|         tok2vec.model.initialize(X=X) | ||||
|     goldY = None | ||||
|     for e in range(3): | ||||
|         if tok2vec: | ||||
|  | @ -145,17 +148,17 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, | |||
|     msg.good(f"Succesfully ended analysis - model looks good.") | ||||
| 
 | ||||
| 
 | ||||
| def get_gradient(goldY, Y, ops): | ||||
|     return ops.asarray(Y) - ops.asarray(goldY) | ||||
| 
 | ||||
| 
 | ||||
| def _simulate_gold(element, counter=1): | ||||
|     if isinstance(element, Iterable): | ||||
|         for i in range(len(element)): | ||||
|             element[i] = _simulate_gold(element[i], counter+i) | ||||
|             element[i] = _simulate_gold(element[i], counter + i) | ||||
|         return element | ||||
|     else: | ||||
|         return 1/counter | ||||
| 
 | ||||
| 
 | ||||
| def get_gradient(goldY, Y, ops): | ||||
|     return ops.asarray(Y) - ops.asarray(goldY) | ||||
|         return 1 / counter | ||||
| 
 | ||||
| 
 | ||||
| def _sentences(): | ||||
|  | @ -229,12 +232,3 @@ def _print_matrix(value): | |||
|     sample_matrix = sample_matrix[0:5] | ||||
|     result = result + str(sample_matrix) | ||||
|     return result | ||||
| 
 | ||||
| 
 | ||||
| def _set_output_dim(model, nO): | ||||
|     # the dim inference doesn't always work 100%, we need this hack like we have it in pipe.pyx | ||||
|     if model.has_dim("nO") is None: | ||||
|         model.set_dim("nO", nO) | ||||
|     if model.has_ref("output_layer"): | ||||
|         if model.get_ref("output_layer").has_dim("nO") is None: | ||||
|             model.get_ref("output_layer").set_dim("nO", nO) | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user