mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
462b2e26b4
|
@ -114,10 +114,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
|
|||
util.set_env_log(False)
|
||||
epoch_model_path = output_path / ('model%d' % i)
|
||||
nlp.to_disk(epoch_model_path)
|
||||
nlp_loaded = lang_class(pipeline=pipeline)
|
||||
for name in pipeline:
|
||||
nlp_loaded.add_pipe(nlp.create_pipe(name), name=name)
|
||||
nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
|
||||
nlp_loaded = util.load_model_from_path(epoch_model_path)
|
||||
dev_docs = list(corpus.dev_docs(
|
||||
nlp_loaded,
|
||||
gold_preproc=gold_preproc))
|
||||
|
@ -131,11 +128,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
|
|||
else:
|
||||
gpu_wps = nwords/(end_time-start_time)
|
||||
with Model.use_device('cpu'):
|
||||
nlp_loaded = lang_class(pipeline=pipeline)
|
||||
for name in pipeline:
|
||||
nlp_loaded.add_pipe(nlp.create_pipe(name), name=name)
|
||||
|
||||
nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
|
||||
nlp_loaded = util.load_model_from_path(epoch_model_path)
|
||||
dev_docs = list(corpus.dev_docs(
|
||||
nlp_loaded, gold_preproc=gold_preproc))
|
||||
start_time = timer()
|
||||
|
|
|
@ -800,11 +800,20 @@ cdef class Parser:
|
|||
if self.model not in (True, False, None) and resized:
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
smaller = self.model[-1]._layers[-1]
|
||||
larger = Affine(self.moves.n_moves, smaller.nI)
|
||||
copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model[-1]._layers[-1] = larger
|
||||
if self.model[-1].is_noop:
|
||||
smaller = self.model[1]
|
||||
dims = dict(self.model[1]._dims)
|
||||
dims['nO'] = self.moves.n_moves
|
||||
larger = self.model[1].__class__(**dims)
|
||||
copy_array(larger.W[:, :smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model = (self.model[0], larger, self.model[2])
|
||||
else:
|
||||
smaller = self.model[-1]._layers[-1]
|
||||
larger = Affine(self.moves.n_moves, smaller.nI)
|
||||
copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
self.model[-1]._layers[-1] = larger
|
||||
|
||||
def begin_training(self, gold_tuples, pipeline=None, **cfg):
|
||||
if 'model' in cfg:
|
||||
|
|
|
@ -22,14 +22,14 @@ def vocab():
|
|||
@pytest.fixture
|
||||
def parser(vocab):
|
||||
parser = NeuralDependencyParser(vocab)
|
||||
parser.cfg['token_vector_width'] = 4
|
||||
parser.cfg['hidden_width'] = 6
|
||||
parser.cfg['token_vector_width'] = 8
|
||||
parser.cfg['hidden_width'] = 30
|
||||
parser.cfg['hist_size'] = 0
|
||||
parser.add_label('left')
|
||||
parser.begin_training([], **parser.cfg)
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
|
||||
for i in range(30):
|
||||
for i in range(10):
|
||||
losses = {}
|
||||
doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
|
||||
gold = GoldParse(doc, heads=[1, 1, 3, 3],
|
||||
|
@ -37,6 +37,8 @@ def parser(vocab):
|
|||
parser.update([doc], [gold], sgd=sgd, losses=losses)
|
||||
return parser
|
||||
|
||||
def test_init_parser(parser):
|
||||
pass
|
||||
|
||||
def test_add_label(parser):
|
||||
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
|
||||
|
|
Loading…
Reference in New Issue
Block a user