mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 16:24:16 +03:00
Fix beam update
This commit is contained in:
parent
d4308d2363
commit
4638f4b869
|
@ -41,21 +41,24 @@ cdef hash_t _hash_state(void* _state, void* _) except 0:
|
|||
|
||||
cdef class ParserBeam(object):
|
||||
cdef public TransitionSystem moves
|
||||
cdef public object docs
|
||||
cdef public object states
|
||||
cdef public object golds
|
||||
cdef public object beams
|
||||
|
||||
def __init__(self, TransitionSystem moves, docs, golds,
|
||||
def __init__(self, TransitionSystem moves, states, golds,
|
||||
int width=4, float density=0.001):
|
||||
self.moves = moves
|
||||
self.docs = docs
|
||||
self.states = states
|
||||
self.golds = golds
|
||||
self.beams = []
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
for doc in docs:
|
||||
cdef StateClass state, st
|
||||
for state in states:
|
||||
beam = Beam(self.moves.n_moves, width, density)
|
||||
beam.initialize(self.moves.init_beam_state, doc.length, doc.c)
|
||||
beam.initialize(self.moves.init_beam_state, state.c.length, state.c._sent)
|
||||
for i in range(beam.size):
|
||||
st = <StateClass>beam.at(i)
|
||||
st.c.offset = state.c.offset
|
||||
self.beams.append(beam)
|
||||
|
||||
@property
|
||||
|
@ -100,34 +103,38 @@ cdef class ParserBeam(object):
|
|||
def get_token_ids(states, int n_tokens):
|
||||
cdef StateClass state
|
||||
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
|
||||
dtype='i', order='C')
|
||||
dtype='int32', order='C')
|
||||
c_ids = <int*>ids.data
|
||||
for i, state in enumerate(states):
|
||||
if not state.is_final():
|
||||
state.c.set_context_tokens(c_ids, n_tokens)
|
||||
else:
|
||||
ids[i] = -1
|
||||
c_ids += ids.shape[1]
|
||||
return ids
|
||||
|
||||
|
||||
def update_beam(TransitionSystem moves, int nr_feature,
|
||||
docs, tokvecs, golds,
|
||||
def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores, drop=0., sgd=None,
|
||||
losses=None, int width=4, float density=0.001):
|
||||
pbeam = ParserBeam(moves, docs, golds,
|
||||
pbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=density)
|
||||
gbeam = ParserBeam(moves, docs, golds,
|
||||
gbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=density)
|
||||
beam_map = {}
|
||||
beam_maps = []
|
||||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(docs))]
|
||||
example_ids = list(range(len(docs)))
|
||||
while not pbeam.is_done and not gbeam.is_done:
|
||||
states, p_indices, g_indices = get_states(example_ids, pbeam, gbeam, beam_map)
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
for t in range(max_steps):
|
||||
if pbeam.is_done and gbeam.is_done:
|
||||
break
|
||||
beam_maps.append({})
|
||||
states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1])
|
||||
|
||||
token_ids = get_token_ids(states, nr_feature)
|
||||
vectors, bp_vectors = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vectors, drop=drop)
|
||||
|
||||
|
||||
backprops.append((token_ids, bp_vectors, bp_scores))
|
||||
|
||||
p_scores = [scores[indices] for indices in p_indices]
|
||||
|
@ -140,18 +147,18 @@ def update_beam(TransitionSystem moves, int nr_feature,
|
|||
|
||||
histories = [(v.p_hist + v.g_hist) for v in violns]
|
||||
losses = [(v.p_probs + v.g_probs) for v in violns]
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_map,
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_maps,
|
||||
histories, losses)
|
||||
return states_d_scores, backprops
|
||||
|
||||
|
||||
def get_states(example_ids, pbeams, gbeams, beam_map):
|
||||
states = []
|
||||
def get_states(pbeams, gbeams, beam_map):
|
||||
seen = {}
|
||||
states = []
|
||||
p_indices = []
|
||||
g_indices = []
|
||||
cdef Beam pbeam, gbeam
|
||||
for eg_id, pbeam, gbeam in zip(example_ids, pbeams, gbeams):
|
||||
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
|
||||
p_indices.append([])
|
||||
for j in range(pbeam.size):
|
||||
key = tuple([eg_id] + pbeam.histories[j])
|
||||
|
@ -174,23 +181,30 @@ def get_states(example_ids, pbeams, gbeams, beam_map):
|
|||
return states, p_indices, g_indices
|
||||
|
||||
|
||||
def get_gradient(nr_class, beam_map, histories, losses):
|
||||
def get_gradient(nr_class, beam_maps, histories, losses):
|
||||
"""
|
||||
The global model assigns a loss to each parse. The beam scores
|
||||
are additive, so the same gradient is applied to each action
|
||||
in the history. This gives the gradient of a single *action*
|
||||
for a beam state -- so we have "the gradient of loss for taking
|
||||
action i given history H."
|
||||
|
||||
Histories: Each hitory is a list of actions
|
||||
Each candidate has a history
|
||||
Each beam has multiple candidates
|
||||
Each batch has multiple beams
|
||||
So history is list of lists of lists of ints
|
||||
"""
|
||||
nr_step = max(len(hist) for hist in histories)
|
||||
nr_beam = len(histories)
|
||||
grads = [numpy.zeros((nr_beam, nr_class), dtype='f') for _ in range(nr_step)]
|
||||
for hist, loss in zip(histories, losses):
|
||||
key = tuple()
|
||||
for j, clas in enumerate(hist):
|
||||
grads[j][i, clas] = loss
|
||||
key = key + clas
|
||||
i = beam_map[key]
|
||||
nr_step = len(beam_maps)
|
||||
grads = [numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f')
|
||||
for beam_map in beam_maps]
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
key = tuple([eg_id])
|
||||
for j, clas in enumerate(hist):
|
||||
i = beam_maps[j][key]
|
||||
grads[j][i, clas] = loss
|
||||
key = key + tuple([clas])
|
||||
return grads
|
||||
|
||||
|
||||
|
|
|
@ -529,23 +529,29 @@ cdef class Parser:
|
|||
|
||||
def update_beam(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = [len(d) for d in docs]
|
||||
tokvecs = self.model[0].ops.flatten(tokvecs)
|
||||
states, golds, max_moves = self._init_gold_batch(docs, golds)
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs, cuda_stream, 0.0)
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0)
|
||||
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature,
|
||||
docs, tokvecs, golds,
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, max_moves,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores,
|
||||
drop, sgd, losses)
|
||||
backprop_lower = []
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
ids, bp_vectors, bp_scores = backprops[i]
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
backprop_lower.append((
|
||||
get_async(cuda_stream, ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vectors))
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
and not isinstance(ids, state2vec.ops.xp.ndarray):
|
||||
backprop_lower.append((
|
||||
get_async(cuda_stream, ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vectors))
|
||||
else:
|
||||
backprop_lower.append((ids, d_vector, bp_vectors))
|
||||
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
|
||||
self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream)
|
||||
lengths = [len(doc) for doc in docs]
|
||||
|
|
Loading…
Reference in New Issue
Block a user