mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-06 10:14:13 +03:00
parent
2b4d652d0d
commit
465848cbc6
|
@ -9,13 +9,21 @@ menu:
|
|||
- ['Various Functions', 'various-functions']
|
||||
---
|
||||
|
||||
[The spacy-llm package](https://github.com/explosion/spacy-llm) integrates Large
|
||||
Language Models (LLMs) into spaCy, featuring a modular system for **fast
|
||||
[The `spacy-llm` package](https://github.com/explosion/spacy-llm) integrates
|
||||
Large Language Models (LLMs) into spaCy, featuring a modular system for **fast
|
||||
prototyping** and **prompting**, and turning unstructured responses into
|
||||
**robust outputs** for various NLP tasks, **no training data** required.
|
||||
|
||||
## Config and implementation {id="config"}
|
||||
|
||||
An LLM component is implemented through the `LLMWrapper` class. It is accessible
|
||||
through a generic `llm`
|
||||
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
||||
`llm_rel`, `llm_textcat`, `llm_sentiment`, `llm_summarization`,
|
||||
`llm_entity_linker`, `llm_raw` and `llm_translation`. For these factories, the
|
||||
GPT-3-5 model from OpenAI is used by default, but this can be customized.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
@ -34,14 +42,6 @@ prototyping** and **prompting**, and turning unstructured responses into
|
|||
> llm = LLMWrapper(vocab=nlp.vocab, task=task, model=model, cache=cache, save_io=True)
|
||||
> ```
|
||||
|
||||
An LLM component is implemented through the `LLMWrapper` class. It is accessible
|
||||
through a generic `llm`
|
||||
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
||||
`llm_rel`, `llm_textcat`, `llm_sentiment` and `llm_summarization`. For these
|
||||
factories, the GPT-3-5 model from OpenAI is used by default, but this can be
|
||||
customized.
|
||||
|
||||
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
|
@ -206,13 +206,82 @@ not require labels.
|
|||
|
||||
## Tasks {id="tasks"}
|
||||
|
||||
### Task implementation {id="task-implementation"}
|
||||
In `spacy-llm`, a _task_ defines an NLP problem or question and its solution
|
||||
using an LLM. It does so by implementing the following responsibilities:
|
||||
|
||||
A _task_ defines an NLP problem or question, that will be sent to the LLM via a
|
||||
prompt. Further, the task defines how to parse the LLM's responses back into
|
||||
structured information. All tasks are registered in the `llm_tasks` registry.
|
||||
1. Loading a prompt template and injecting documents' data into the prompt.
|
||||
Optionally, include fewshot examples in the prompt.
|
||||
2. Splitting the prompt into several pieces following a map-reduce paradigm,
|
||||
_if_ the prompt is too long to fit into the model's context and the task
|
||||
supports sharding prompts.
|
||||
3. Parsing the LLM's responses back into structured information and validating
|
||||
the parsed output.
|
||||
|
||||
#### task.generate_prompts {id="task-generate-prompts"}
|
||||
Two different task interfaces are supported: `ShardingLLMTask` and
|
||||
`NonShardingLLMTask`. Only the former supports the sharding of documents, i. e.
|
||||
splitting up prompts if they are too long.
|
||||
|
||||
All tasks are registered in the `llm_tasks` registry.
|
||||
|
||||
### On Sharding {id="task-sharding"}
|
||||
|
||||
"Sharding" describes, generally speaking, the process of distributing parts of a
|
||||
dataset across multiple storage units for easier processing and lookups. In
|
||||
`spacy-llm` we use this term (synonymously: "mapping") to describe the splitting
|
||||
up of prompts if they are too long for a model to handle, and "fusing"
|
||||
(synonymously: "reducing") to describe how the model responses for several
|
||||
shards are merged back together into a single document.
|
||||
|
||||
Prompts are broken up in a manner that _always_ keeps the prompt in the template
|
||||
intact, meaning that the instructions to the LLM will always stay complete. The
|
||||
document content however will be split, if the length of the fully rendered
|
||||
prompt exceeds a model context length.
|
||||
|
||||
A toy example: let's assume a model has a context window of 25 tokens and the
|
||||
prompt template for our fictional, sharding-supporting task looks like this:
|
||||
|
||||
```
|
||||
Estimate the sentiment of this text:
|
||||
"{text}"
|
||||
Estimated sentiment:
|
||||
```
|
||||
|
||||
Depending on how tokens are counted exactly (this is a config setting), we might
|
||||
come up with `n = 12` tokens for the number of tokens in the prompt
|
||||
instructions. Furthermore let's assume that our `text` is "This has been
|
||||
amazing - I can't remember the last time I left the cinema so impressed." -
|
||||
which has roughly 19 tokens.
|
||||
|
||||
Considering we only have 13 tokens to add to our prompt before we hit the
|
||||
context limit, we'll have to split our prompt into two parts. Thus `spacy-llm`,
|
||||
assuming the task used supports sharding, will split the prompt into two (the
|
||||
default splitting strategy splits by tokens, but alternative splitting
|
||||
strategies splitting e. g. by sentences can be configured):
|
||||
|
||||
_(Prompt 1/2)_
|
||||
|
||||
```
|
||||
Estimate the sentiment of this text:
|
||||
"This has been amazing - I can't remember "
|
||||
Estimated sentiment:
|
||||
```
|
||||
|
||||
_(Prompt 2/2)_
|
||||
|
||||
```
|
||||
Estimate the sentiment of this text:
|
||||
"the last time I left the cinema so impressed."
|
||||
Estimated sentiment:
|
||||
```
|
||||
|
||||
The reduction step is task-specific - a sentiment estimation task might e. g. do
|
||||
a weighted average of the sentiment scores. Note that prompt sharding introduces
|
||||
potential inaccuracies, as the LLM won't have access to the entire document at
|
||||
once. Depending on your use case this might or might not be problematic.
|
||||
|
||||
### `NonShardingLLMTask` {id="task-nonsharding"}
|
||||
|
||||
#### task.generate_prompts {id="task-nonsharding-generate-prompts"}
|
||||
|
||||
Takes a collection of documents, and returns a collection of "prompts", which
|
||||
can be of type `Any`. Often, prompts are of type `str` - but this is not
|
||||
|
@ -223,7 +292,7 @@ enforced to allow for maximum flexibility in the framework.
|
|||
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The generated prompts. ~~Iterable[Any]~~ |
|
||||
|
||||
#### task.parse_responses {id="task-parse-responses"}
|
||||
#### task.parse_responses {id="task-non-sharding-parse-responses"}
|
||||
|
||||
Takes a collection of LLM responses and the original documents, parses the
|
||||
responses into structured information, and sets the annotations on the
|
||||
|
@ -234,11 +303,157 @@ defined fields.
|
|||
The `responses` are of type `Iterable[Any]`, though they will often be `str`
|
||||
objects. This depends on the return type of the [model](#models).
|
||||
|
||||
| Argument | Description |
|
||||
| ----------- | ------------------------------------------ |
|
||||
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||||
| `responses` | The generated prompts. ~~Iterable[Any]~~ |
|
||||
| **RETURNS** | The annotated documents. ~~Iterable[Doc]~~ |
|
||||
| Argument | Description |
|
||||
| ----------- | ------------------------------------------------------ |
|
||||
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||||
| `responses` | The responses received from the LLM. ~~Iterable[Any]~~ |
|
||||
| **RETURNS** | The annotated documents. ~~Iterable[Doc]~~ |
|
||||
|
||||
### `ShardingLLMTask` {id="task-sharding"}
|
||||
|
||||
#### task.generate_prompts {id="task-sharding-generate-prompts"}
|
||||
|
||||
Takes a collection of documents, breaks them up into shards if necessary to fit
|
||||
all content into the model's context, and returns a collection of collections of
|
||||
"prompts" (i. e. each doc can have multiple shards, each of which have exactly
|
||||
one prompt), which can be of type `Any`. Often, prompts are of type `str` - but
|
||||
this is not enforced to allow for maximum flexibility in the framework.
|
||||
|
||||
| Argument | Description |
|
||||
| ----------- | -------------------------------------------------- |
|
||||
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The generated prompts. ~~Iterable[Iterable[Any]]~~ |
|
||||
|
||||
#### task.parse_responses {id="task-sharding-parse-responses"}
|
||||
|
||||
Receives a collection of collections of LLM responses (i. e. each doc can have
|
||||
multiple shards, each of which have exactly one prompt / prompt response) and
|
||||
the original shards, parses the responses into structured information, sets the
|
||||
annotations on the shards, and merges back doc shards into single docs. The
|
||||
`parse_responses` function is free to set the annotations in any way, including
|
||||
`Doc` fields like `ents`, `spans` or `cats`, or using custom defined fields.
|
||||
|
||||
The `responses` are of type `Iterable[Iterable[Any]]`, though they will often be
|
||||
`str` objects. This depends on the return type of the [model](#models).
|
||||
|
||||
| Argument | Description |
|
||||
| ----------- | ---------------------------------------------------------------- |
|
||||
| `shards` | The input document shards. ~~Iterable[Iterable[Doc]]~~ |
|
||||
| `responses` | The responses received from the LLM. ~~Iterable[Iterable[Any]]~~ |
|
||||
| **RETURNS** | The annotated documents. ~~Iterable[Doc]~~ |
|
||||
|
||||
### Translation {id="translation"}
|
||||
|
||||
The translation task translates texts from a defined or inferred source to a
|
||||
defined target language.
|
||||
|
||||
#### spacy.Translation.v1 {id="translation-v1"}
|
||||
|
||||
`spacy.Translation.v1` supports both zero-shot and few-shot prompting.
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [components.llm.task]
|
||||
> @llm_tasks = "spacy.Translation.v1"
|
||||
> examples = null
|
||||
> target_lang = "Spanish"
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [translation.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/translation.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[TranslationTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TranslationExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `source_lang` | Language to translate from. Doesn't have to be set. ~~Optional[str]~~ |
|
||||
| `target_lang` | Language to translate to. No default value, has to be set. ~~str~~ |
|
||||
| `field` | Name of extension attribute to store translation in (i. e. the translation will be available in `doc._.{field}`). Defaults to `translation`. ~~str~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
||||
```yaml
|
||||
- text: 'Top of the morning to you!'
|
||||
translation: '¡Muy buenos días!'
|
||||
- text: 'The weather is great today.'
|
||||
translation: 'El clima está fantástico hoy.'
|
||||
- text: 'Do you know what will happen tomorrow?'
|
||||
translation: '¿Sabes qué pasará mañana?'
|
||||
```
|
||||
|
||||
```ini
|
||||
[components.llm.task]
|
||||
@llm_tasks = "spacy.Translation.v1"
|
||||
target_lang = "Spanish"
|
||||
[components.llm.task.examples]
|
||||
@misc = "spacy.FewShotReader.v1"
|
||||
path = "translation_examples.yml"
|
||||
```
|
||||
|
||||
### Raw prompting {id="raw"}
|
||||
|
||||
Different to all other tasks `spacy.Raw.vX` doesn't provide a specific prompt,
|
||||
wrapping doc data, to the model. Instead it instructs the model to reply to the
|
||||
doc content. This is handy for use cases like question answering (where each doc
|
||||
contains one question) or if you want to include customized prompts for each
|
||||
doc.
|
||||
|
||||
#### spacy.Raw.v1 {id="raw-v1"}
|
||||
|
||||
Note that since this task may request arbitrary information, it doesn't do any
|
||||
parsing per se - the model response is stored in a custom `Doc` attribute (i. e.
|
||||
can be accessed via `doc._.{field}`).
|
||||
|
||||
It supports both zero-shot and few-shot prompting.
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [components.llm.task]
|
||||
> @llm_tasks = "spacy.Raw.v1"
|
||||
> examples = null
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| --------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [raw.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/raw.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[RawTask]]~~ |
|
||||
| `prompt_example_type` | Type to use for fewshot examples. Defaults to `RawExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `field` | Name of extension attribute to store model reply in (i. e. the reply will be available in `doc._.{field}`). Defaults to `reply`. ~~str~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
||||
```yaml
|
||||
# Each example can follow an arbitrary pattern. It might help the prompt performance though if the examples resemble
|
||||
# the actual docs' content.
|
||||
- text: "3 + 5 = x. What's x?"
|
||||
reply: '8'
|
||||
|
||||
- text: 'Write me a limerick.'
|
||||
reply:
|
||||
"There was an Old Man with a beard, Who said, 'It is just as I feared! Two
|
||||
Owls and a Hen, Four Larks and a Wren, Have all built their nests in my
|
||||
beard!"
|
||||
|
||||
- text: "Analyse the sentiment of the text 'This is great'."
|
||||
reply: "'This is great' expresses a very positive sentiment."
|
||||
```
|
||||
|
||||
```ini
|
||||
[components.llm.task]
|
||||
@llm_tasks = "spacy.Raw.v1"
|
||||
field = "llm_reply"
|
||||
[components.llm.task.examples]
|
||||
@misc = "spacy.FewShotReader.v1"
|
||||
path = "raw_examples.yml"
|
||||
```
|
||||
|
||||
### Summarization {id="summarization"}
|
||||
|
||||
|
@ -307,6 +522,171 @@ max_n_words = 20
|
|||
path = "summarization_examples.yml"
|
||||
```
|
||||
|
||||
### EL (Entity Linking) {id="nel"}
|
||||
|
||||
The EL links recognized entities (see [NER](#ner)) to those in a knowledge base
|
||||
(KB). The EL task prompts the LLM to select the most likely candidate from the
|
||||
KB, whose structure can be arbitrary.
|
||||
|
||||
Note that the documents processed by the entity linking task are expected to
|
||||
have recognized entities in their `.ents` attribute. This can be achieved by
|
||||
either running the [NER task](#ner), using a trained spaCy NER model or setting
|
||||
the entities manually prior to running the EL task.
|
||||
|
||||
In order to be able to pull data from the KB, an object implementing the
|
||||
`CandidateSelector` protocol has to be provided. This requires two functions:
|
||||
(1) `__call__()` to fetch candidate entities for entity mentions in the text
|
||||
(assumed to be available in `Doc.ents`) and (2) `get_entity_description()` to
|
||||
fetch descriptions for any given entity ID. Descriptions can be empty, but
|
||||
ideally provide more context for entities stored in the KB.
|
||||
|
||||
`spacy-llm` provides a `CandidateSelector` implementation
|
||||
(`spacy.CandidateSelector.v1`) that leverages a spaCy knowledge base - as used
|
||||
in an `entity_linking` component - to select candidates. This knowledge base can
|
||||
be loaded from an existing spaCy pipeline (note that the pipeline's EL component
|
||||
doesn't have to be trained) or from a separate .yaml file.
|
||||
|
||||
#### spacy.EntityLinker.v1 {id="el-v1"}
|
||||
|
||||
Supports zero- and few-shot prompting. Relies on a configurable component
|
||||
suggesting viable entities before letting the LLM pick the most likely
|
||||
candidate.
|
||||
|
||||
> #### Example config for spacy.EntityLinker.v1
|
||||
>
|
||||
> ```ini
|
||||
> [paths]
|
||||
> el_nlp = null
|
||||
>
|
||||
> ...
|
||||
>
|
||||
> [components.llm.task]
|
||||
> @llm_tasks = "spacy.EntityLinker.v1"
|
||||
>
|
||||
> [initialize]
|
||||
> [initialize.components]
|
||||
> [initialize.components.llm]
|
||||
> [initialize.components.llm.candidate_selector]
|
||||
> @llm_misc = "spacy.CandidateSelector.v1"
|
||||
>
|
||||
> # Load a KB from a KB file. For loading KBs from spaCy pipelines see spacy.KBObjectLoader.v1.
|
||||
> [initialize.components.llm.candidate_selector.kb_loader]
|
||||
> @llm_misc = "spacy.KBFileLoader.v1"
|
||||
> # Path to knowledge base .yaml file.
|
||||
> path = ${paths.el_kb}
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [entity_linker.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/entity_linker.v1.jinja). ~~str~~ |
|
||||
| `parse_responses` | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[EntityLinkerTask]]~~ |
|
||||
| `prompt_example_type` | Type to use for fewshot examples. Defaults to `ELExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `examples` | Optional callable that reads a file containing task examples for few-shot learning. If `None` is passed, zero-shot learning will be used. Defaults to `None`. ~~ExamplesConfigType~~ |
|
||||
| `scorer` | Scorer function. Defaults to the metric used by spaCy to evaluate entity linking performance. ~~Optional[Scorer]~~ |
|
||||
|
||||
##### spacy.CandidateSelector.v1 {id="candidate-selector-v1"}
|
||||
|
||||
`spacy.CandidateSelector.v1` is an implementation of the `CandidateSelector`
|
||||
protocol required by [`spacy.EntityLinker.v1`](#el-v1). The built-in candidate
|
||||
selector method allows loading existing knowledge bases in several ways, e. g.
|
||||
loading from a spaCy pipeline with a (not necessarily trained) entity linking
|
||||
component, and loading from a file describing the knowlege base as a .yaml file.
|
||||
Either way the loaded data will be converted to a spaCy `InMemoryLookupKB`
|
||||
instance. The KB's selection capabilities are used to select the most likely
|
||||
entity candidates for the specified mentions.
|
||||
|
||||
> #### Example config for spacy.CandidateSelector.v1
|
||||
>
|
||||
> ```ini
|
||||
> [initialize]
|
||||
> [initialize.components]
|
||||
> [initialize.components.llm]
|
||||
> [initialize.components.llm.candidate_selector]
|
||||
> @llm_misc = "spacy.CandidateSelector.v1"
|
||||
>
|
||||
> # Load a KB from a KB file. For loading KBs from spaCy pipelines see spacy.KBObjectLoader.v1.
|
||||
> [initialize.components.llm.candidate_selector.kb_loader]
|
||||
> @llm_misc = "spacy.KBFileLoader.v1"
|
||||
> # Path to knowledge base .yaml file.
|
||||
> path = ${paths.el_kb}
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ----------- | ----------------------------------------------------------------- |
|
||||
| `kb_loader` | KB loader object. ~~InMemoryLookupKBLoader~~ |
|
||||
| `top_n` | Top-n candidates to include in the prompt. Defaults to 5. ~~int~~ |
|
||||
|
||||
##### spacy.KBObjectLoader.v1 {id="kb-object-loader-v1"}
|
||||
|
||||
Adheres to the `InMemoryLookupKBLoader` interface required by
|
||||
[`spacy.CandidateSelector.v1`](#candidate-selector-v1). Loads a knowledge base
|
||||
from an existing spaCy pipeline.
|
||||
|
||||
> #### Example config for spacy.KBObjectLoader.v1
|
||||
>
|
||||
> ```ini
|
||||
> [initialize.components.llm.candidate_selector.kb_loader]
|
||||
> @llm_misc = "spacy.KBObjectLoader.v1"
|
||||
> # Path to knowledge base directory in serialized spaCy pipeline.
|
||||
> path = ${paths.el_kb}
|
||||
> # Path to spaCy pipeline. If this is not specified, spacy-llm tries to determine this automatically (but may fail).
|
||||
> nlp_path = ${paths.el_nlp}
|
||||
> # Path to file with descriptions for entity.
|
||||
> desc_path = ${paths.el_desc}
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | Path to KB file. ~~Union[str, Path]~~ |
|
||||
| `nlp_path` | Path to serialized NLP pipeline. If None, path will be guessed. ~~Optional[Union[Path, str]]~~ |
|
||||
| `desc_path` | Path to file with descriptions for entities. ~~int~~ |
|
||||
| `ent_desc_reader` | Entity description reader. Defaults to an internal method expecting a CSV file without header row, with ";" as delimiters, and with two columns - one for the entitys' IDs, one for their descriptions. ~~Optional[EntDescReader]~~ |
|
||||
|
||||
##### spacy.KBFileLoader.v1 {id="kb-file-loader-v1"}
|
||||
|
||||
Adheres to the `InMemoryLookupKBLoader` interface required by
|
||||
[`spacy.CandidateSelector.v1`](#candidate-selector-v1). Loads a knowledge base
|
||||
from a knowledge base file. The KB .yaml file has to stick to the following
|
||||
format:
|
||||
|
||||
```yaml
|
||||
entities:
|
||||
# The key should be whatever ID identifies this entity uniquely in your knowledge base.
|
||||
ID1:
|
||||
name: "..."
|
||||
desc: "..."
|
||||
ID2:
|
||||
...
|
||||
# Data on aliases in your knowledge base - e. g. "Apple" for the entity "Apple Inc.".
|
||||
aliases:
|
||||
- alias: "..."
|
||||
# List of all entities that this alias refers to.
|
||||
entities: ["ID1", "ID2", ...]
|
||||
# Optional: prior probabilities that this alias refers to the n-th entity in the "entities" attribute.
|
||||
probabilities: [0.5, 0.2, ...]
|
||||
- alias: "..."
|
||||
entities: [...]
|
||||
probabilities: [...]
|
||||
...
|
||||
```
|
||||
|
||||
See
|
||||
[here](https://github.com/explosion/spacy-llm/blob/main/usage_examples/el_openai/el_kb_data.yml)
|
||||
for a toy example of how such a KB file might look like.
|
||||
|
||||
> #### Example config for spacy.KBFileLoader.v1
|
||||
>
|
||||
> ```ini
|
||||
> [initialize.components.llm.candidate_selector.kb_loader]
|
||||
> @llm_misc = "spacy.KBFileLoader.v1"
|
||||
> # Path to knowledge base file.
|
||||
> path = ${paths.el_kb}
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| -------- | ------------------------------------- |
|
||||
| `path` | Path to KB file. ~~Union[str, Path]~~ |
|
||||
|
||||
### NER {id="ner"}
|
||||
|
||||
The NER task identifies non-overlapping entities in text.
|
||||
|
@ -984,9 +1364,15 @@ A _model_ defines which LLM model to query, and how to query it. It can be a
|
|||
simple function taking a collection of prompts (consistent with the output type
|
||||
of `task.generate_prompts()`) and returning a collection of responses
|
||||
(consistent with the expected input of `parse_responses`). Generally speaking,
|
||||
it's a function of type `Callable[[Iterable[Any]], Iterable[Any]]`, but specific
|
||||
it's a function of type
|
||||
`Callable[[Iterable[Iterable[Any]]], Iterable[Iterable[Any]]]`, but specific
|
||||
implementations can have other signatures, like
|
||||
`Callable[[Iterable[str]], Iterable[str]]`.
|
||||
`Callable[[Iterable[Iterable[str]]], Iterable[Iterable[str]]]`.
|
||||
|
||||
Note: the model signature expects a nested iterable so it's able to deal with
|
||||
sharded docs. Unsharded docs (i. e. those produced by (nonsharding
|
||||
tasks)[/api/large-language-models#task-nonsharding]) are reshaped to fit the
|
||||
expected data structure.
|
||||
|
||||
### Models via REST API {id="models-rest"}
|
||||
|
||||
|
@ -994,14 +1380,15 @@ These models all take the same parameters, but note that the `config` should
|
|||
contain provider-specific keys and values, as it will be passed onwards to the
|
||||
provider's API.
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `name` | Model name, i. e. any supported variant for this particular model. Default depends on the specific model (cf. below) ~~str~~ |
|
||||
| `config` | Further configuration passed on to the model. Default depends on the specific model (cf. below). ~~Dict[Any, Any]~~ |
|
||||
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||||
| `max_tries` | Max. number of tries for API request. Defaults to `5`. ~~int~~ |
|
||||
| `max_request_time` | Max. time (in seconds) to wait for request to terminate before raising an exception. Defaults to `30.0`. ~~float~~ |
|
||||
| `interval` | Time interval (in seconds) for API retries in seconds. Defaults to `1.0`. ~~float~~ |
|
||||
| Argument | Description |
|
||||
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `name` | Model name, i. e. any supported variant for this particular model. Default depends on the specific model (cf. below) ~~str~~ |
|
||||
| `config` | Further configuration passed on to the model. Default depends on the specific model (cf. below). ~~Dict[Any, Any]~~ |
|
||||
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||||
| `max_tries` | Max. number of tries for API request. Defaults to `5`. ~~int~~ |
|
||||
| `max_request_time` | Max. time (in seconds) to wait for request to terminate before raising an exception. Defaults to `30.0`. ~~float~~ |
|
||||
| `interval` | Time interval (in seconds) for API retries in seconds. Defaults to `1.0`. ~~float~~ |
|
||||
| `endpoint` | Endpoint URL. Defaults to the provider's standard URL, if available (which is not the case for providers with exclusively custom deployments, such as Azure) ~~Optional[str]~~ |
|
||||
|
||||
> #### Example config:
|
||||
>
|
||||
|
@ -1018,8 +1405,10 @@ Currently, these models are provided as part of the core library:
|
|||
| ----------------------------- | ----------------- | ------------------------------------------------------------------------------------------------------------------ | ---------------------- | ------------------------------------ |
|
||||
| `spacy.GPT-4.v1` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{}` |
|
||||
| `spacy.GPT-4.v2` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{temperature=0.0}` |
|
||||
| `spacy.GPT-4.v3` | OpenAI | All names of [GPT-4 models](https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo) offered by OpenAI | `"gpt-4"` | `{temperature=0.0}` |
|
||||
| `spacy.GPT-3-5.v1` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{}` |
|
||||
| `spacy.GPT-3-5.v2` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{temperature=0.0}` |
|
||||
| `spacy.GPT-3-5.v3` | OpenAI | All names of [GPT-3.5 models](https://platform.openai.com/docs/models/gpt-3-5) offered by OpenAI | `"gpt-3.5-turbo"` | `{temperature=0.0}` |
|
||||
| `spacy.Davinci.v1` | OpenAI | `["davinci"]` | `"davinci"` | `{}` |
|
||||
| `spacy.Davinci.v2` | OpenAI | `["davinci"]` | `"davinci"` | `{temperature=0.0, max_tokens=500}` |
|
||||
| `spacy.Text-Davinci.v1` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{}` |
|
||||
|
@ -1040,6 +1429,7 @@ Currently, these models are provided as part of the core library:
|
|||
| `spacy.Text-Ada.v2` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{temperature=0.0, max_tokens=500}` |
|
||||
| `spacy.Azure.v1` | Microsoft, OpenAI | Arbitrary values | No default | `{temperature=0.0}` |
|
||||
| `spacy.Command.v1` | Cohere | `["command", "command-light", "command-light-nightly", "command-nightly"]` | `"command"` | `{}` |
|
||||
| `spacy.Claude-2-1.v1` | Anthropic | `["claude-2-1"]` | `"claude-2-1"` | `{}` |
|
||||
| `spacy.Claude-2.v1` | Anthropic | `["claude-2", "claude-2-100k"]` | `"claude-2"` | `{}` |
|
||||
| `spacy.Claude-1.v1` | Anthropic | `["claude-1", "claude-1-100k"]` | `"claude-1"` | `{}` |
|
||||
| `spacy.Claude-1-0.v1` | Anthropic | `["claude-1.0"]` | `"claude-1.0"` | `{}` |
|
||||
|
|
Loading…
Reference in New Issue
Block a user