mirror of
https://github.com/explosion/spaCy.git
synced 2025-05-02 23:03:41 +03:00
Always use tqdm with disable=None
`tqdm` can cause deadlocks in the test suite if enabled.
This commit is contained in:
parent
b4990395f9
commit
467c82439e
|
@ -133,7 +133,9 @@ def apply(
|
||||||
if len(text_files) > 0:
|
if len(text_files) > 0:
|
||||||
streams.append(_stream_texts(text_files))
|
streams.append(_stream_texts(text_files))
|
||||||
datagen = cast(DocOrStrStream, chain(*streams))
|
datagen = cast(DocOrStrStream, chain(*streams))
|
||||||
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
|
for doc in tqdm.tqdm(
|
||||||
|
nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None
|
||||||
|
):
|
||||||
docbin.add(doc)
|
docbin.add(doc)
|
||||||
if output_file.suffix == "":
|
if output_file.suffix == "":
|
||||||
output_file = output_file.with_suffix(".spacy")
|
output_file = output_file.with_suffix(".spacy")
|
||||||
|
|
|
@ -89,7 +89,7 @@ class Quartiles:
|
||||||
def annotate(
|
def annotate(
|
||||||
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
||||||
) -> numpy.ndarray:
|
) -> numpy.ndarray:
|
||||||
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
|
docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size)
|
||||||
wps = []
|
wps = []
|
||||||
while True:
|
while True:
|
||||||
with time_context() as elapsed:
|
with time_context() as elapsed:
|
||||||
|
|
|
@ -71,7 +71,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
|
||||||
|
|
||||||
|
|
||||||
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
|
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
|
||||||
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
|
for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -302,7 +302,7 @@ def read_vectors(
|
||||||
shape = (truncate_vectors, shape[1])
|
shape = (truncate_vectors, shape[1])
|
||||||
vectors_data = numpy.zeros(shape=shape, dtype="f")
|
vectors_data = numpy.zeros(shape=shape, dtype="f")
|
||||||
vectors_keys = []
|
vectors_keys = []
|
||||||
for i, line in enumerate(tqdm.tqdm(f)):
|
for i, line in enumerate(tqdm.tqdm(f, disable=None)):
|
||||||
line = line.rstrip()
|
line = line.rstrip()
|
||||||
pieces = line.rsplit(" ", vectors_data.shape[1])
|
pieces = line.rsplit(" ", vectors_data.shape[1])
|
||||||
word = pieces.pop(0)
|
word = pieces.pop(0)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user