mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-03 21:24:11 +03:00
WIP: Add fine-tuning logic to tagger model, re #1182
This commit is contained in:
parent
7f876a7a82
commit
468c138ab3
70
spacy/_ml.py
70
spacy/_ml.py
|
@ -19,7 +19,7 @@ from thinc.api import FeatureExtracter, with_getitem
|
|||
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
|
||||
from thinc.neural._classes.attention import ParametricAttention
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.api import uniqued, wrap
|
||||
from thinc.api import uniqued, wrap, flatten_add_lengths
|
||||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from .tokens.doc import Doc
|
||||
|
@ -53,6 +53,27 @@ def _logistic(X, drop=0.):
|
|||
return Y, logistic_bwd
|
||||
|
||||
|
||||
@layerize
|
||||
def add_tuples(X, drop=0.):
|
||||
"""Give inputs of sequence pairs, where each sequence is (vals, length),
|
||||
sum the values, returning a single sequence.
|
||||
|
||||
If input is:
|
||||
((vals1, length), (vals2, length)
|
||||
Output is:
|
||||
(vals1+vals2, length)
|
||||
|
||||
vals are a single tensor for the whole batch.
|
||||
"""
|
||||
(vals1, length1), (vals2, length2) = X
|
||||
assert length1 == length2
|
||||
|
||||
def add_tuples_bwd(dY, sgd=None):
|
||||
return (dY, dY)
|
||||
|
||||
return (vals1+vals2, length), add_tuples_bwd
|
||||
|
||||
|
||||
def _zero_init(model):
|
||||
def _zero_init_impl(self, X, y):
|
||||
self.W.fill(0)
|
||||
|
@ -61,6 +82,7 @@ def _zero_init(model):
|
|||
model.W.fill(0.)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.):
|
||||
keys = [doc.to_array([LOWER]) for doc in docs]
|
||||
|
@ -72,7 +94,6 @@ def _preprocess_doc(docs, drop=0.):
|
|||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
|
||||
def _init_for_precomputed(W, ops):
|
||||
if (W**2).sum() != 0.:
|
||||
return
|
||||
|
@ -80,6 +101,7 @@ def _init_for_precomputed(W, ops):
|
|||
ops.xavier_uniform_init(reshaped)
|
||||
W[:] = reshaped.reshape(W.shape)
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
|
@ -323,6 +345,21 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
return vectors, backward
|
||||
|
||||
|
||||
def fine_tune(model1, combine=None):
|
||||
def fine_tune_fwd(docs, drop=0.):
|
||||
X1, bp_X1 = model1.begin_update(docs)
|
||||
lengths = [len(doc) for doc in docs]
|
||||
X2 = model1.ops.flatten(X1)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_X1(d_output, sgd=sgd)
|
||||
return d_output
|
||||
|
||||
return (X1+X2, lengths), fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
if isinstance(seqs[0], numpy.ndarray):
|
||||
|
@ -370,6 +407,35 @@ def preprocess_doc(docs, drop=0.):
|
|||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def build_tagger_model(nr_class, token_vector_width, **cfg):
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
# Input: (doc, tensor) tuples
|
||||
embed_docs = with_getitem(0,
|
||||
FeatureExtracter([NORM])
|
||||
>> HashEmbed(token_vector_width, 1000)
|
||||
>> flatten_add_lengths
|
||||
)
|
||||
|
||||
model = (
|
||||
fine_tune(embed_docs)
|
||||
>>
|
||||
with_getitem(0,
|
||||
FeatureExtracter([NORM])
|
||||
>> HashEmbed(token_vector_width, 1000)
|
||||
>> flatten_add_lengths
|
||||
)
|
||||
>> with_getitem(1,
|
||||
flatten_add_lengths)
|
||||
>> add_tuples
|
||||
>> with_flatten(
|
||||
Maxout(token_vector_width, token_vector_width)
|
||||
>> Softmax(nr_class, token_vector_width)
|
||||
)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
nr_vector = cfg.get('nr_vector', 200)
|
||||
with Model.define_operators({'>>': chain, '+': add, '|': concatenate, '**': clone}):
|
||||
|
|
|
@ -42,7 +42,7 @@ from .compat import json_dumps
|
|||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
||||
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
||||
from ._ml import build_text_classifier
|
||||
from ._ml import build_text_classifier, build_tagger_model
|
||||
from .parts_of_speech import X
|
||||
|
||||
|
||||
|
@ -346,9 +346,7 @@ class NeuralTagger(BaseThincComponent):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
|
@ -455,9 +453,7 @@ class NeuralLabeller(NeuralTagger):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
|
|
Loading…
Reference in New Issue
Block a user