mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
* Use openmp in parser
This commit is contained in:
parent
9c34ca9e5d
commit
490ba65398
4
setup.py
4
setup.py
|
@ -71,9 +71,9 @@ if sys.version_info[:2] < (2, 7) or (3, 0) <= sys.version_info[0:2] < (3, 4):
|
|||
# By subclassing build_extensions we have the actual compiler that will be used which is really known only after finalize_options
|
||||
# http://stackoverflow.com/questions/724664/python-distutils-how-to-get-a-compiler-that-is-going-to-be-used
|
||||
compile_options = {'msvc' : ['/Ox', '/EHsc'],
|
||||
'other' : ['-O3', '-Wno-strict-prototypes', '-Wno-unused-function']}
|
||||
'other' : ['-O3', '-Wno-strict-prototypes', '-Wno-unused-function', '-fopenmp']}
|
||||
link_options = {'msvc' : [],
|
||||
'other' : []}
|
||||
'other' : ['-fopenmp']}
|
||||
|
||||
if sys.platform.startswith('darwin'):
|
||||
compile_options['other'].append('-mmacosx-version-min=10.8')
|
||||
|
|
|
@ -21,6 +21,10 @@ from murmurhash.mrmr cimport hash64
|
|||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.structs cimport SparseArrayC
|
||||
from thinc.structs cimport FeatureC
|
||||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
|
||||
from util import Config
|
||||
|
||||
|
@ -101,7 +105,6 @@ cdef class Parser:
|
|||
def __call__(self, Doc tokens):
|
||||
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
||||
self.moves.initialize_state(stcls)
|
||||
|
||||
cdef Example eg = Example(
|
||||
nr_class=self.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
|
@ -112,13 +115,22 @@ cdef class Parser:
|
|||
PyErr_CheckSignals()
|
||||
|
||||
cdef void parseC(self, Doc tokens, StateClass stcls, Example eg) nogil:
|
||||
cdef const MapStruct* weights_table = self.model.weights.c_map
|
||||
cdef int i, j
|
||||
cdef FeatureC feat
|
||||
while not stcls.is_final():
|
||||
self.model.set_featuresC(&eg.c, stcls)
|
||||
self.moves.set_valid(eg.c.is_valid, stcls.c)
|
||||
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
||||
|
||||
for i in range(eg.c.nr_feat):
|
||||
feat = eg.c.features[i]
|
||||
class_weights = <const SparseArrayC*>map_get(weights_table, feat.key)
|
||||
if class_weights != NULL:
|
||||
j = 0
|
||||
while class_weights[j].key >= 0:
|
||||
eg.c.scores[class_weights[j].key] += class_weights[j].val * feat.value
|
||||
j += 1
|
||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||
|
||||
action = self.moves.c[guess]
|
||||
if not eg.c.is_valid[guess]:
|
||||
with gil:
|
||||
|
|
Loading…
Reference in New Issue
Block a user