mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
issue5230: test cases
covering known sources of resource warnings
This commit is contained in:
parent
beef184e53
commit
493c77462a
112
spacy/tests/regression/test_issue5230.py
Normal file
112
spacy/tests/regression/test_issue5230.py
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
import pytest
|
||||||
|
import srsly
|
||||||
|
|
||||||
|
from spacy.kb import KnowledgeBase
|
||||||
|
from spacy.vectors import Vectors
|
||||||
|
from spacy.language import Language
|
||||||
|
from spacy.pipeline import Pipe
|
||||||
|
from spacy.tests.util import make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail
|
||||||
|
def test_language_to_disk_resource_warning():
|
||||||
|
nlp = Language()
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
# catch only warnings raised in spacy.language since there may be others from other components or pipelines
|
||||||
|
warnings.filterwarnings(
|
||||||
|
"always", module="spacy.language", category=ResourceWarning
|
||||||
|
)
|
||||||
|
nlp.to_disk(d)
|
||||||
|
assert len(w) == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail
|
||||||
|
def test_vectors_to_disk_resource_warning():
|
||||||
|
data = numpy.zeros((3, 300), dtype="f")
|
||||||
|
keys = ["cat", "dog", "rat"]
|
||||||
|
vectors = Vectors(data=data, keys=keys)
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
vectors.to_disk(d)
|
||||||
|
assert len(w) == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail
|
||||||
|
def test_custom_pipes_to_disk_resource_warning():
|
||||||
|
# create dummy pipe partially implementing interface -- only want to test to_disk
|
||||||
|
class SerializableDummy(object):
|
||||||
|
def __init__(self, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
super(SerializableDummy, self).__init__()
|
||||||
|
|
||||||
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
||||||
|
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
|
||||||
|
|
||||||
|
def from_bytes(self, bytes_data, exclude):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||||
|
return self
|
||||||
|
|
||||||
|
class MyPipe(Pipe):
|
||||||
|
def __init__(self, vocab, model=True, **cfg):
|
||||||
|
if cfg:
|
||||||
|
self.cfg = cfg
|
||||||
|
else:
|
||||||
|
self.cfg = None
|
||||||
|
self.model = SerializableDummy()
|
||||||
|
self.vocab = SerializableDummy()
|
||||||
|
|
||||||
|
pipe = MyPipe(None)
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
pipe.to_disk(d)
|
||||||
|
assert len(w) == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail
|
||||||
|
def test_tagger_to_disk_resource_warning():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.add_pipe(nlp.create_pipe("tagger"))
|
||||||
|
tagger = nlp.get_pipe("tagger")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
tagger.begin_training(pipeline=nlp.pipeline)
|
||||||
|
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
tagger.to_disk(d)
|
||||||
|
assert len(w) == 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail
|
||||||
|
def test_entity_linker_to_disk_resource_warning():
|
||||||
|
nlp = Language()
|
||||||
|
nlp.add_pipe(nlp.create_pipe("entity_linker"))
|
||||||
|
entity_linker = nlp.get_pipe("entity_linker")
|
||||||
|
# need to add model for two reasons:
|
||||||
|
# 1. no model leads to error in serialization,
|
||||||
|
# 2. the affected line is the one for model serialization
|
||||||
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||||
|
entity_linker.set_kb(kb)
|
||||||
|
entity_linker.begin_training(pipeline=nlp.pipeline)
|
||||||
|
|
||||||
|
with make_tempdir() as d:
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
warnings.filterwarnings("always", category=ResourceWarning)
|
||||||
|
entity_linker.to_disk(d)
|
||||||
|
assert len(w) == 0
|
Loading…
Reference in New Issue
Block a user