mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
* Fix conflict in download.py
This commit is contained in:
commit
49939fbb0d
|
@ -8,16 +8,24 @@ environment:
|
|||
matrix:
|
||||
|
||||
# Python 2.7.10 is the latest version and is not pre-installed.
|
||||
|
||||
- PYTHON: "C:\\Python27.10-x64"
|
||||
PYTHON_VERSION: "2.7.10"
|
||||
PYTHON_ARCH: "64"
|
||||
|
||||
- PYTHON: "C:\\Python27.10-x32"
|
||||
PYTHON_VERSION: "2.7.10"
|
||||
PYTHON_ARCH: "32"
|
||||
|
||||
# The lastest Python 3.4.
|
||||
- PYTHON: "C:\\Python34-x64"
|
||||
PYTHON_VERSION: "3.4.x" # currently 3.4.3
|
||||
PYTHON_ARCH: "64"
|
||||
|
||||
#- PYTHON: "C:\\Python34-x32"
|
||||
# PYTHON_VERSION: "3.4.x" # currently 3.4.3
|
||||
# PYTHON_ARCH: "32"
|
||||
|
||||
|
||||
install:
|
||||
# Install Python (from the official .msi of http://python.org) and pip when
|
||||
# not already installed.
|
||||
|
@ -30,10 +38,11 @@ install:
|
|||
- "SET PYTHONPATH=%CD%;%PYTHONPATH%"
|
||||
|
||||
# Filesystem root
|
||||
# - ps: "ls \"C:/\""
|
||||
#- ps: "ls \"C:/\""
|
||||
#- SET
|
||||
|
||||
# Installed SDKs
|
||||
# - ps: "ls \"C:/Program Files/Microsoft SDKs/Windows\""
|
||||
#- ps: "ls \"C:/Program Files/Microsoft SDKs/Windows\""
|
||||
|
||||
# Checking stdint.h
|
||||
#- ps: "ls \"C:/projects/spacy/include/\""
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
|
||||
<img src="https://ci.appveyor.com/api/projects/status/aoe3dtkep36rdaqf?svg=true" />
|
||||
|
||||
spaCy: Industrial-strength NLP
|
||||
==============================
|
||||
|
||||
|
@ -49,3 +52,6 @@ Difficult to support:
|
|||
|
||||
* PyPy 2.7
|
||||
* PyPy 3.4
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -191,7 +191,8 @@ def setup_vocab(get_lex_attr, tag_map, src_dir, dst_dir):
|
|||
else:
|
||||
lexeme.cluster = 0
|
||||
vocab.dump(str(dst_dir / 'lexemes.bin'))
|
||||
vocab.strings.dump(str(dst_dir / 'strings.txt'))
|
||||
with (dst_dir / 'strings.json').open('w') as file_:
|
||||
vocab.strings.dump(file_)
|
||||
with (dst_dir / 'oov_prob').open('w') as file_:
|
||||
file_.write('%f' % oov_prob)
|
||||
|
||||
|
|
6
setup.py
6
setup.py
|
@ -129,11 +129,13 @@ def cython_setup(mod_names, language, includes):
|
|||
version=VERSION,
|
||||
url="http://honnibal.github.io/spaCy/",
|
||||
package_data={"spacy": ["*.pxd"],
|
||||
"spacy.tokens": ["*.pxd"],
|
||||
"spacy.serialize": ["*.pxd"],
|
||||
"spacy.en": ["*.pxd", "data/pos/*",
|
||||
"data/wordnet/*", "data/tokenizer/*",
|
||||
"data/vocab/tag_map.json",
|
||||
"data/vocab/lexemes.bin",
|
||||
"data/vocab/strings.txt"],
|
||||
"data/vocab/strings.json"],
|
||||
"spacy.syntax": ["*.pxd"]},
|
||||
ext_modules=exts,
|
||||
cmdclass={'build_ext': build_ext_cython_subclass},
|
||||
|
@ -175,7 +177,7 @@ def run_setup(exts):
|
|||
headers_workaround.install_headers('numpy')
|
||||
|
||||
|
||||
VERSION = '0.96'
|
||||
VERSION = '0.97'
|
||||
def main(modules, is_pypy):
|
||||
language = "cpp"
|
||||
includes = ['.', path.join(sys.prefix, 'include')]
|
||||
|
|
|
@ -7,13 +7,15 @@ import plac
|
|||
|
||||
from . import uget
|
||||
|
||||
|
||||
try:
|
||||
FileExistsError
|
||||
except NameError:
|
||||
FileExistsError = Exception
|
||||
|
||||
|
||||
# TODO: Read this from the same source as the setup
|
||||
VERSION = '0.9.5'
|
||||
VERSION = '0.9.6'
|
||||
|
||||
AWS_STORE = 'https://s3-us-west-1.amazonaws.com/media.spacynlp.com'
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from os import path
|
||||
from warnings import warn
|
||||
import io
|
||||
|
||||
try:
|
||||
import ujson as json
|
||||
|
@ -247,7 +248,10 @@ class Language(object):
|
|||
self.parser.model.end_training(path.join(data_dir, 'deps', 'model'))
|
||||
self.entity.model.end_training(path.join(data_dir, 'ner', 'model'))
|
||||
self.tagger.model.end_training(path.join(data_dir, 'pos', 'model'))
|
||||
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
strings_loc = path.join(data_dir, 'vocab', 'strings.json')
|
||||
with io.open(strings_loc, 'w', encoding='utf8') as file_:
|
||||
self.vocab.strings.dump(file_)
|
||||
|
||||
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
|
||||
file_.write(
|
||||
|
|
|
@ -19,7 +19,7 @@ class Lemmatizer(object):
|
|||
index[pos] = read_index(path.join(data_dir, 'wordnet', 'index.%s' % pos))
|
||||
exc[pos] = read_exc(path.join(data_dir, 'wordnet', '%s.exc' % pos))
|
||||
if path.exists(path.join(data_dir, 'vocab', 'lemma_rules.json')):
|
||||
rules = json.load(open(path.join(data_dir, 'vocab', 'lemma_rules.json')))
|
||||
rules = json.load(codecs.open(path.join(data_dir, 'vocab', 'lemma_rules.json'), encoding='utf_8'))
|
||||
else:
|
||||
rules = {}
|
||||
return cls(index, exc, rules)
|
||||
|
|
|
@ -12,8 +12,15 @@ from libc.stdint cimport int64_t
|
|||
|
||||
from .typedefs cimport hash_t, attr_t
|
||||
|
||||
try:
|
||||
import codecs as io
|
||||
except ImportError:
|
||||
import io
|
||||
|
||||
SEPARATOR = '\n|-SEP-|\n'
|
||||
try:
|
||||
import ujson as json
|
||||
except ImportError:
|
||||
import json
|
||||
|
||||
|
||||
cpdef hash_t hash_string(unicode string) except 0:
|
||||
|
@ -114,7 +121,11 @@ cdef class StringStore:
|
|||
def __iter__(self):
|
||||
cdef int i
|
||||
for i in range(self.size):
|
||||
yield self[i]
|
||||
if i == 0:
|
||||
yield u''
|
||||
else:
|
||||
utf8str = &self.c[i]
|
||||
yield _decode(utf8str)
|
||||
|
||||
def __reduce__(self):
|
||||
strings = [""]
|
||||
|
@ -138,26 +149,20 @@ cdef class StringStore:
|
|||
self.size += 1
|
||||
return &self.c[self.size-1]
|
||||
|
||||
def dump(self, loc):
|
||||
cdef Utf8Str* string
|
||||
cdef unicode py_string
|
||||
cdef int i
|
||||
with codecs.open(loc, 'w', 'utf8') as file_:
|
||||
for i in range(1, self.size):
|
||||
string = &self.c[i]
|
||||
py_string = _decode(string)
|
||||
file_.write(py_string)
|
||||
if (i+1) != self.size:
|
||||
file_.write(SEPARATOR)
|
||||
def dump(self, file_):
|
||||
string_data = json.dumps([s for s in self])
|
||||
if not isinstance(string_data, unicode):
|
||||
string_data = string_data.decode('utf8')
|
||||
file_.write(string_data)
|
||||
|
||||
def load(self, loc):
|
||||
with codecs.open(loc, 'r', 'utf8') as file_:
|
||||
strings = file_.read().split(SEPARATOR)
|
||||
def load(self, file_):
|
||||
strings = json.load(file_)
|
||||
if strings == ['']:
|
||||
return None
|
||||
cdef unicode string
|
||||
cdef bytes byte_string
|
||||
for string in strings:
|
||||
if string:
|
||||
byte_string = string.encode('utf8')
|
||||
self.intern(byte_string, len(byte_string))
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ cdef class Tokenizer:
|
|||
cdef object _prefix_re
|
||||
cdef object _suffix_re
|
||||
cdef object _infix_re
|
||||
cdef object _rules
|
||||
|
||||
cpdef Doc tokens_from_list(self, list strings)
|
||||
|
||||
|
|
|
@ -29,6 +29,16 @@ cdef class Tokenizer:
|
|||
self._infix_re = infix_re
|
||||
self.vocab = vocab
|
||||
self._load_special_tokenization(rules)
|
||||
self._rules = rules
|
||||
|
||||
def __reduce__(self):
|
||||
args = (self.vocab,
|
||||
self._rules,
|
||||
self._prefix_re,
|
||||
self._suffix_re,
|
||||
self._infix_re)
|
||||
|
||||
return (self.__class__, args, None, None)
|
||||
|
||||
@classmethod
|
||||
def from_dir(cls, Vocab vocab, data_dir):
|
||||
|
|
|
@ -120,6 +120,9 @@ cdef class Doc:
|
|||
def __str__(self):
|
||||
return u''.join([t.string for t in self])
|
||||
|
||||
def __repr__(self):
|
||||
return u''.join([t.string for t in self])
|
||||
|
||||
def similarity(self, other):
|
||||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||||
return 0.0
|
||||
|
|
|
@ -46,6 +46,12 @@ cdef class Span:
|
|||
return 0
|
||||
return self.end - self.start
|
||||
|
||||
def __repr__(self):
|
||||
text = self.text_with_ws
|
||||
if self[-1].whitespace_:
|
||||
text = text[:-1]
|
||||
return text
|
||||
|
||||
def __getitem__(self, object i):
|
||||
if isinstance(i, slice):
|
||||
start, end = normalize_slice(len(self), i.start, i.stop, i.step)
|
||||
|
|
|
@ -43,6 +43,9 @@ cdef class Token:
|
|||
def __str__(self):
|
||||
return self.string
|
||||
|
||||
def __repr__(self):
|
||||
return self.string
|
||||
|
||||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||||
return Lexeme.c_check_flag(self.c.lex, flag_id)
|
||||
|
||||
|
|
|
@ -62,7 +62,9 @@ cdef class Vocab:
|
|||
cdef Vocab self = cls(get_lex_attr=get_lex_attr, tag_map=tag_map,
|
||||
lemmatizer=lemmatizer, serializer_freqs=serializer_freqs)
|
||||
|
||||
self.load_lexemes(path.join(data_dir, 'strings.txt'), path.join(data_dir, 'lexemes.bin'))
|
||||
with io.open(path.join(data_dir, 'strings.json'), 'r', encoding='utf8') as file_:
|
||||
self.strings.load(file_)
|
||||
self.load_lexemes(path.join(data_dir, 'lexemes.bin'))
|
||||
if path.exists(path.join(data_dir, 'vec.bin')):
|
||||
self.vectors_length = self.load_vectors_from_bin_loc(path.join(data_dir, 'vec.bin'))
|
||||
return self
|
||||
|
@ -106,11 +108,12 @@ cdef class Vocab:
|
|||
# TODO: Dump vectors
|
||||
tmp_dir = tempfile.mkdtemp()
|
||||
lex_loc = path.join(tmp_dir, 'lexemes.bin')
|
||||
str_loc = path.join(tmp_dir, 'strings.txt')
|
||||
str_loc = path.join(tmp_dir, 'strings.json')
|
||||
vec_loc = path.join(self.data_dir, 'vec.bin') if self.data_dir is not None else None
|
||||
|
||||
self.dump(lex_loc)
|
||||
self.strings.dump(str_loc)
|
||||
with io.open(str_loc, 'w', encoding='utf8') as file_:
|
||||
self.strings.dump(file_)
|
||||
|
||||
state = (str_loc, lex_loc, vec_loc, self.morphology, self.get_lex_attr,
|
||||
self.serializer_freqs, self.data_dir)
|
||||
|
@ -250,8 +253,7 @@ cdef class Vocab:
|
|||
fp.write_from(&lexeme.l2_norm, sizeof(lexeme.l2_norm), 1)
|
||||
fp.close()
|
||||
|
||||
def load_lexemes(self, strings_loc, loc):
|
||||
self.strings.load(strings_loc)
|
||||
def load_lexemes(self, loc):
|
||||
if not path.exists(loc):
|
||||
raise IOError('LexemeCs file not found at %s' % loc)
|
||||
fp = CFile(loc, 'rb')
|
||||
|
@ -369,7 +371,9 @@ def unpickle_vocab(strings_loc, lex_loc, vec_loc, morphology, get_lex_attr,
|
|||
vocab.data_dir = data_dir
|
||||
vocab.serializer_freqs = serializer_freqs
|
||||
|
||||
vocab.load_lexemes(strings_loc, lex_loc)
|
||||
with io.open(strings_loc, 'r', encoding='utf8') as file_:
|
||||
vocab.strings.load(file_)
|
||||
vocab.load_lexemes(lex_loc)
|
||||
if vec_loc is not None:
|
||||
vocab.load_vectors_from_bin_loc(vec_loc)
|
||||
return vocab
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
import pytest
|
||||
import io
|
||||
import cloudpickle
|
||||
import io
|
||||
import os
|
||||
import pickle
|
||||
|
||||
import pytest
|
||||
import tempfile
|
||||
|
||||
@pytest.mark.models
|
||||
def test_pickle_english(EN):
|
||||
|
@ -12,4 +13,15 @@ def test_pickle_english(EN):
|
|||
file_.seek(0)
|
||||
|
||||
loaded = pickle.load(file_)
|
||||
assert loaded is not None
|
||||
|
||||
@pytest.mark.models
|
||||
def test_cloudpickle_to_file(EN):
|
||||
f = tempfile.NamedTemporaryFile(delete=False)
|
||||
p = cloudpickle.CloudPickler(f)
|
||||
p.dump(EN)
|
||||
f.close()
|
||||
loaded_en = cloudpickle.load(open(f.name))
|
||||
os.unlink(f.name)
|
||||
doc = loaded_en(unicode('test parse'))
|
||||
assert len(doc) == 2
|
||||
|
|
|
@ -2,6 +2,19 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
import io
|
||||
import pickle
|
||||
import cloudpickle
|
||||
import tempfile
|
||||
|
||||
|
||||
@pytest.mark.models
|
||||
def test_pickle(en_tokenizer):
|
||||
file_ = io.BytesIO()
|
||||
cloudpickle.dump(en_tokenizer, file_)
|
||||
file_.seek(0)
|
||||
loaded = pickle.load(file_)
|
||||
assert loaded is not None
|
||||
|
||||
|
||||
def test_no_word(en_tokenizer):
|
||||
|
|
|
@ -1,12 +1,13 @@
|
|||
# -*- coding: utf8 -*-
|
||||
from __future__ import unicode_literals
|
||||
import pickle
|
||||
import io
|
||||
|
||||
from spacy.strings import StringStore
|
||||
|
||||
import pytest
|
||||
|
||||
import io
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sstore():
|
||||
|
@ -92,4 +93,12 @@ def test_pickle_string_store(sstore):
|
|||
assert loaded[hello_id] == u'Hi'
|
||||
|
||||
|
||||
|
||||
def test_dump_load(sstore):
|
||||
id_ = sstore[u'qqqqq']
|
||||
loc = '/tmp/sstore.json'
|
||||
with io.open(loc, 'w', encoding='utf8') as file_:
|
||||
sstore.dump(file_)
|
||||
new_store = StringStore()
|
||||
with io.open(loc, 'r', encoding='utf8') as file_:
|
||||
new_store.load(file_)
|
||||
assert new_store[id_] == u'qqqqq'
|
||||
|
|
Loading…
Reference in New Issue
Block a user