From 4b5540cc63a611812d98477901b3fae60fff6700 Mon Sep 17 00:00:00 2001 From: ines Date: Thu, 25 May 2017 01:58:33 +0200 Subject: [PATCH] Rewrite examples in lightning tour --- website/docs/usage/lightning-tour.jade | 260 +++++++++++++------------ 1 file changed, 134 insertions(+), 126 deletions(-) diff --git a/website/docs/usage/lightning-tour.jade b/website/docs/usage/lightning-tour.jade index 24654b853..a946beb55 100644 --- a/website/docs/usage/lightning-tour.jade +++ b/website/docs/usage/lightning-tour.jade @@ -6,40 +6,138 @@ p | The following examples and code snippets give you an overview of spaCy's | functionality and its usage. -+h(2, "models") Install and load models ++h(2, "models") Install models and process text +code(false, "bash"). python -m spacy download en + python -m spacy download de +code. import spacy nlp = spacy.load('en') + doc = nlp(u'Hello, world. Here are two sentences.') -+h(2, "examples-resources") Load resources and process text + nlp_de = spacy.load('de') + doc_de = nlp_de(u'Ich bin ein Berliner.') + ++infobox + | #[strong API:] #[+api("spacy#load") #[code spacy.load()]] + | #[strong Usage:] #[+a("/docs/usage/models") Models], + | #[+a("/docs/usage/spacy-101") spaCy 101] + ++h(2, "examples-tokens-sentences") Get tokens, noun chunks & sentences + +tag-model("dependency parse") + ++code. + doc = nlp(u"Peach emoji is where it has always been. Peach is the superior " + u"emoji. It's outranking eggplant 🍑 ") + + assert doc[0].text == u'Peach' + assert doc[1].text == u'emoji' + assert doc[-1].text == u'🍑' + assert doc[17:19] == u'outranking eggplant' + assert doc.noun_chunks[0].text == u'Peach emoji' + + sentences = list(doc.sents) + assert len(sentences) == 3 + assert sentences[0].text == u'Peach is the superior emoji.' + ++infobox + | #[strong API:] #[+api("doc") #[code Doc]], #[+api("token") #[code Token]] + | #[strong Usage:] #[+a("/docs/usage/spacy-101") spaCy 101] + ++h(2, "examples-pos-tags") Get part-of-speech tags and flags + +tag-model("tagger") + ++code. + doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion') + apple = doc[0] + assert [apple.pos_, apple.pos] == [u'PROPN', 94] + assert [apple.tag_, apple.tag] == [u'NNP', 475] + assert [apple.shape_, apple.shape] == [u'Xxxxx', 684] + assert apple.is_alpha == True + assert apple.is_punct == False + + billion = doc[10] + assert billion.is_digit == False + assert billion.like_num == True + assert billion.like_email == False + ++infobox + | #[strong API:] #[+api("token") #[code Token]] + | #[strong Usage:] #[+a("/docs/usage/pos-tagging") Part-of-speech tagging] + ++h(2, "examples-integer-ids") Use integer IDs for any string + ++code. + hello_id = nlp.vocab.strings['Hello'] + hello_str = nlp.vocab.strings[hello_id] + assert token.text == hello_id == 3125 + assert token.text == hello_str == 'Hello' + ++h(2, "examples-entities") Recongnise and update named entities + +tag-model("NER") + ++code. + doc = nlp(u'San Francisco considers banning sidewalk delivery robots') + ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents] + assert ents == [(u'San Francisco', 0, 13, u'GPE')] + + from spacy.tokens import Span + doc = nlp(u'Netflix is hiring a new VP of global policy') + doc.ents = [Span(doc, 0, 1, label=doc.vocab.strings[u'ORG'])] + ents = [(e.start_char, e.end_char, e.label_) for ent in doc.ents] + assert ents == [(0, 7, u'ORG')] + ++infobox + | #[strong Usage:] #[+a("/docs/usage/entity-recognition") Named entity recognition] + ++h(2, "displacy") Visualize a dependency parse and named entities in your browser + +tag-model("dependency parse", "NER") + ++code. + from spacy import displacy + + doc_dep = nlp(u'This is a sentence.') + displacy.serve(doc_dep, style='dep') + + doc_ent = nlp(u'When Sebastian Thrun started working on self-driving cars at ' + u'Google in 2007, few people outside of the company took him seriously.') + displacy.serve(doc_ent, style='ent') + ++infobox + | #[strong API:] #[+api("displacy") #[code displacy]] + | #[strong Usage:] #[+a("/docs/usage/visualizers") Visualizers] + ++h(2, "examples-word-vectors") Word vectors + +tag-model("word vectors") + ++code. + doc = nlp(u"Apple and banana are similar. Pasta and hippo aren't.") + apple = doc[0] + banana = doc[2] + pasta = doc[6] + hippo = doc[8] + assert apple.similarity(banana) > pasta.similarity(hippo) + ++infobox + | #[strong Usage:] #[+a("/docs/usage/word-vectors-similarities") Word vectors and similarity] + ++h(2, "examples-serialization") Simple and efficient serialization +code. import spacy - en_nlp = spacy.load('en') - de_nlp = spacy.load('de') - en_doc = en_nlp(u'Hello, world. Here are two sentences.') - de_doc = de_nlp(u'ich bin ein Berliner.') + from spacy.tokens.doc import Doc -+h(2, "displacy-dep") Visualize a dependency parse in your browser + nlp = spacy.load('en') + moby_dick = open('moby_dick.txt', 'r') + doc = nlp(moby_dick) + doc.to_disk('/moby_dick.bin') -+code. - from spacy import displacy + new_doc = Doc().from_disk('/moby_dick.bin') - doc = nlp(u'This is a sentence.') - displacy.serve(doc, style='dep') - -+h(2, "displacy-ent") Visualize named entities in your browser - -+code. - from spacy import displacy - - doc = nlp(u'When Sebastian Thrun started working on self-driving cars at ' - u'Google in 2007, few people outside of the company took him seriously.') - displacy.serve(doc, style='ent') ++infobox + | #[strong Usage:] #[+a("/docs/usage/saving-loading") Saving and loading] +h(2, "multi-threaded") Multi-threaded generator @@ -52,37 +150,25 @@ p if i == 100: break -+h(2, "examples-tokens-sentences") Get tokens and sentences ++infobox + | #[strong API:] #[+api("doc") #[code Doc]] + | #[strong Usage:] #[+a("/docs/usage/production-usage") Production usage] + ++h(2, "examples-dependencies") Get syntactic dependencies + +tag-model("dependency parse") +code. - token = doc[0] - sentence = next(doc.sents) - assert token is sentence[0] - assert sentence.text == 'Hello, world.' + def dependency_labels_to_root(token): + """Walk up the syntactic tree, collecting the arc labels.""" + dep_labels = [] + while token.head is not token: + dep_labels.append(token.dep) + token = token.head + return dep_labels -+h(2, "examples-integer-ids") Use integer IDs for any string - -+code. - hello_id = nlp.vocab.strings['Hello'] - hello_str = nlp.vocab.strings[hello_id] - - assert token.orth == hello_id == 3125 - assert token.orth_ == hello_str == 'Hello' - -+h(2, "examples-string-views-flags") Get and set string views and flags - -+code. - assert token.shape_ == 'Xxxxx' - for lexeme in nlp.vocab: - if lexeme.is_alpha: - lexeme.shape_ = 'W' - elif lexeme.is_digit: - lexeme.shape_ = 'D' - elif lexeme.is_punct: - lexeme.shape_ = 'P' - else: - lexeme.shape_ = 'M' - assert token.shape_ == 'W' ++infobox + | #[strong API:] #[+api("token") #[code Token]] + | #[strong Usage:] #[+a("/docs/usage/dependency-parse") Using the dependency parse] +h(2, "examples-numpy-arrays") Export to numpy arrays @@ -97,70 +183,6 @@ p assert doc[0].like_url == doc_array[0, 1] assert list(doc_array[:, 1]) == [t.like_url for t in doc] -+h(2, "examples-word-vectors") Word vectors - -+code. - doc = nlp("Apples and oranges are similar. Boots and hippos aren't.") - - apples = doc[0] - oranges = doc[2] - boots = doc[6] - hippos = doc[8] - - assert apples.similarity(oranges) > boots.similarity(hippos) - -+h(2, "examples-pos-tags") Part-of-speech tags - -+code. - from spacy.parts_of_speech import ADV - - def is_adverb(token): - return token.pos == spacy.parts_of_speech.ADV - - # These are data-specific, so no constants are provided. You have to look - # up the IDs from the StringStore. - NNS = nlp.vocab.strings['NNS'] - NNPS = nlp.vocab.strings['NNPS'] - def is_plural_noun(token): - return token.tag == NNS or token.tag == NNPS - - def print_coarse_pos(token): - print(token.pos_) - - def print_fine_pos(token): - print(token.tag_) - -+h(2, "examples-dependencies") Syntactic dependencies - -+code. - def dependency_labels_to_root(token): - '''Walk up the syntactic tree, collecting the arc labels.''' - dep_labels = [] - while token.head is not token: - dep_labels.append(token.dep) - token = token.head - return dep_labels - -+h(2, "examples-entities") Named entities - -+code. - def iter_products(docs): - for doc in docs: - for ent in doc.ents: - if ent.label_ == 'PRODUCT': - yield ent - - def word_is_in_entity(word): - return word.ent_type != 0 - - def count_parent_verb_by_person(docs): - counts = defaultdict(lambda: defaultdict(int)) - for doc in docs: - for ent in doc.ents: - if ent.label_ == 'PERSON' and ent.root.head.pos == VERB: - counts[ent.orth_][ent.root.head.lemma_] += 1 - return counts - +h(2, "examples-inline") Calculate inline mark-up on original string +code. @@ -187,17 +209,3 @@ p string = string.replace('\n', '') string = string.replace('\t', ' ') return string - -+h(2, "examples-binary") Efficient binary serialization - -+code. - import spacy - from spacy.tokens.doc import Doc - - byte_string = doc.to_bytes() - open('moby_dick.bin', 'wb').write(byte_string) - - nlp = spacy.load('en') - for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')): - doc = Doc(nlp.vocab) - doc.from_bytes(byte_string)