mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-04 12:20:20 +03:00
Fix mypy issues
This commit is contained in:
parent
7cd9a99854
commit
4b598a1b54
|
@ -163,7 +163,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
||||||
for i, doc_d_tree_scores in enumerate(d_tree_scores):
|
for i, doc_d_tree_scores in enumerate(d_tree_scores):
|
||||||
eg_lowercasing_flags = lowercasing_flags[i]
|
eg_lowercasing_flags = lowercasing_flags[i]
|
||||||
eg_d_lowercasing_flags, eg_lowercasing_loss = lowercasing_loss_func(
|
eg_d_lowercasing_flags, eg_lowercasing_loss = lowercasing_loss_func(
|
||||||
eg_lowercasing_flags, self.model.ops.asarray2f(lowercasing_truths[i])
|
eg_lowercasing_flags, self.model.ops.asarray2i(lowercasing_truths[i])
|
||||||
)
|
)
|
||||||
doc_d_scores = self.model.ops.xp.hstack(
|
doc_d_scores = self.model.ops.xp.hstack(
|
||||||
[
|
[
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import cast, Dict
|
from typing import cast, Dict, Optional
|
||||||
import pickle
|
import pickle
|
||||||
import pytest
|
import pytest
|
||||||
from hypothesis import given
|
from hypothesis import given
|
||||||
|
@ -193,7 +193,7 @@ def test_incomplete_data(lowercasing: bool):
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||||
for i in range(50):
|
for i in range(50):
|
||||||
losses: Dict[Floats2d, Floats2d] = {}
|
losses: Optional[Dict[str, float]] = {}
|
||||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
|
@ -222,7 +222,7 @@ def test_overfitting_IO(lowercasing: bool):
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||||
|
|
||||||
for i in range(50):
|
for i in range(50):
|
||||||
losses: Dict[Floats2d, Floats2d] = {}
|
losses: Optional[Dict[str, float]] = {}
|
||||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
|
||||||
test_text = "She likes blue eggs"
|
test_text = "She likes blue eggs"
|
||||||
|
@ -411,7 +411,7 @@ def test_lowercasing(lowercasing: bool):
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||||
for _ in range(50):
|
for _ in range(50):
|
||||||
losses: Dict[Floats2d, Floats2d] = {}
|
losses: Optional[Dict[str, float]] = {}
|
||||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||||
|
|
||||||
# test the trained model
|
# test the trained model
|
||||||
|
|
Loading…
Reference in New Issue
Block a user