* Fix multi word matcher

This commit is contained in:
Matthew Honnibal 2015-10-09 02:02:37 +11:00
parent 801d55a6d9
commit 4bbc8f45c6

View File

@ -26,137 +26,71 @@ from ast import literal_eval
from bz2 import BZ2File
import time
import math
import codecs
import plac
from preshed.maps import PreshMap
from preshed.counter import PreshCounter
from spacy.strings import hash_string
from spacy.en import English
from spacy.matcher import Matcher
from spacy.attrs import FLAG63 as B_ENT
from spacy.attrs import FLAG62 as L_ENT
from spacy.attrs import FLAG61 as I_ENT
from spacy.attrs import FLAG60 as B2_ENT
from spacy.attrs import FLAG59 as B3_ENT
from spacy.attrs import FLAG58 as B4_ENT
from spacy.attrs import FLAG57 as B5_ENT
from spacy.attrs import FLAG56 as B6_ENT
from spacy.attrs import FLAG55 as B7_ENT
from spacy.attrs import FLAG54 as B8_ENT
from spacy.attrs import FLAG53 as B9_ENT
from spacy.attrs import FLAG52 as B10_ENT
from spacy.attrs import FLAG51 as I3_ENT
from spacy.attrs import FLAG50 as I4_ENT
from spacy.attrs import FLAG49 as I5_ENT
from spacy.attrs import FLAG48 as I6_ENT
from spacy.attrs import FLAG47 as I7_ENT
from spacy.attrs import FLAG46 as I8_ENT
from spacy.attrs import FLAG45 as I9_ENT
from spacy.attrs import FLAG44 as I10_ENT
from spacy.attrs import FLAG43 as L2_ENT
from spacy.attrs import FLAG42 as L3_ENT
from spacy.attrs import FLAG41 as L4_ENT
from spacy.attrs import FLAG40 as L5_ENT
from spacy.attrs import FLAG39 as L6_ENT
from spacy.attrs import FLAG38 as L7_ENT
from spacy.attrs import FLAG37 as L8_ENT
from spacy.attrs import FLAG36 as L9_ENT
from spacy.attrs import FLAG35 as L10_ENT
from spacy.matcher import PhraseMatcher
def get_bilou(length):
if length == 1:
return [U_ENT]
elif length == 2:
return [B2_ENT, L2_ENT]
elif length == 3:
return [B3_ENT, I3_ENT, L3_ENT]
elif length == 4:
return [B4_ENT, I4_ENT, I4_ENT, L4_ENT]
elif length == 5:
return [B5_ENT, I5_ENT, I5_ENT, L5_ENT]
elif length == 6:
return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT]
elif length == 7:
return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT]
elif length == 8:
return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT]
elif length == 9:
return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, L9_ENT]
elif length == 10:
return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, L10_ENT]
def make_matcher(vocab, max_length):
abstract_patterns = []
for length in range(2, max_length):
abstract_patterns.append([{tag: True} for tag in get_bilou(length)])
return Matcher(vocab, {'Candidate': ('CAND', {}, abstract_patterns)})
def get_matches(matcher, pattern_ids, doc):
matches = []
for label, start, end in matcher(doc):
candidate = doc[start : end]
if pattern_ids[hash_string(candidate.text)] == True:
start = candidate[0].idx
end = candidate[-1].idx + len(candidate[-1])
matches.append((start, end, candidate.root.tag_, candidate.text))
return matches
def merge_matches(doc, matches):
for start, end, tag, text in matches:
doc.merge(start, end, tag, text, 'MWE')
def read_gazetteer(loc):
for line in open(loc):
def read_gazetteer(tokenizer, loc, n=-1):
for i, line in enumerate(open(loc)):
phrase = literal_eval('u' + line.strip())
if ' (' in phrase and phrase.endswith(')'):
phrase = phrase.split(' (', 1)[0]
yield phrase
if i >= n:
break
phrase = tokenizer(phrase)
if len(phrase) >= 2:
yield phrase
def read_text(bz2_loc):
with BZ2File(bz2_loc) as file_:
for line in file_:
yield line.decode('utf8')
def main(patterns_loc, text_loc):
def get_matches(tokenizer, phrases, texts, max_length=6):
matcher = PhraseMatcher(tokenizer.vocab, phrases, max_length=max_length)
print("Match")
for text in texts:
doc = tokenizer(text)
matches = matcher(doc)
for mwe in doc.ents:
yield mwe
def main(patterns_loc, text_loc, counts_loc, n=10000000):
nlp = English(parser=False, tagger=False, entity=False)
pattern_ids = PreshMap()
max_length = 10
i = 0
for pattern_str in read_gazetteer(patterns_loc):
pattern = nlp.tokenizer(pattern_str)
if len(pattern) < 2 or len(pattern) >= max_length:
continue
bilou_tags = get_bilou(len(pattern))
for word, tag in zip(pattern, bilou_tags):
lexeme = nlp.vocab[word.orth]
lexeme.set_flag(tag, True)
pattern_ids[hash_string(pattern.text)] = True
i += 1
if i >= 10000001:
break
matcher = make_matcher(nlp.vocab, max_length)
print("Make matcher")
phrases = read_gazetteer(nlp.tokenizer, patterns_loc, n=n)
counts = PreshCounter()
t1 = time.time()
for text in read_text(text_loc):
doc = nlp.tokenizer(text)
matches = get_matches(matcher, pattern_ids, doc)
merge_matches(doc, matches)
for mwe in get_matches(nlp.tokenizer, phrases, read_text(text_loc)):
counts.inc(hash_string(mwe.text), 1)
t2 = time.time()
print('10 ^ %d patterns took %d s' % (round(math.log(i, 10)), t2-t1))
print("10m tokens in %d s" % (t2 - t1))
with codecs.open(counts_loc, 'w', 'utf8') as file_:
for phrase in read_gazetteer(nlp.tokenizer, patterns_loc, n=n):
text = phrase.string
key = hash_string(text)
count = counts[key]
if count != 0:
file_.write('%d\t%s\n' % (count, text))
if __name__ == '__main__':
plac.call(main)
if False:
import cProfile
import pstats
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()
else:
plac.call(main)