mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 01:34:30 +03:00
details on Thinc shape inference
This commit is contained in:
parent
e39242c4e6
commit
4c080b3a98
|
@ -348,13 +348,14 @@ ensure that training configs are complete and experiments fully reproducible.
|
||||||
## Thinc implemention details {#thinc}
|
## Thinc implemention details {#thinc}
|
||||||
|
|
||||||
Ofcourse it's also possible to define the `Model` from the previous section
|
Ofcourse it's also possible to define the `Model` from the previous section
|
||||||
entirely in Thinc. The Thinc documentation documents the
|
entirely in Thinc. The Thinc documentation provides details on the
|
||||||
[various layers](https://thinc.ai/docs/api-layers) and helper functions
|
[various layers](https://thinc.ai/docs/api-layers) and helper functions
|
||||||
available.
|
available.
|
||||||
|
|
||||||
The combinators often used in Thinc can be used to
|
The combinators often used in Thinc can be used to
|
||||||
[overload operators](https://thinc.ai/docs/usage-models#operators). A common
|
[overload operators](https://thinc.ai/docs/usage-models#operators). A common
|
||||||
usage is for example to bind `chain` to `>>`:
|
usage is to bind `chain` to `>>`. The "native" Thinc version of our simple
|
||||||
|
neural network would then become:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from thinc.api import chain, with_array, Model, Relu, Dropout, Softmax
|
from thinc.api import chain, with_array, Model, Relu, Dropout, Softmax
|
||||||
|
@ -364,11 +365,11 @@ char_embed = CharacterEmbed(width, embed_size, nM, nC)
|
||||||
|
|
||||||
with Model.define_operators({">>": chain}):
|
with Model.define_operators({">>": chain}):
|
||||||
layers = (
|
layers = (
|
||||||
Relu(nO=hidden_width, nI=width)
|
Relu(hidden_width, width)
|
||||||
>> Dropout(dropout)
|
>> Dropout(dropout)
|
||||||
>> Relu(nO=hidden_width, nI=hidden_width)
|
>> Relu(hidden_width, hidden_width)
|
||||||
>> Dropout(dropout)
|
>> Dropout(dropout)
|
||||||
>> Softmax(nO=nO, nI=hidden_width)
|
>> Softmax(nO, hidden_width)
|
||||||
)
|
)
|
||||||
model = char_embed >> with_array(layers)
|
model = char_embed >> with_array(layers)
|
||||||
```
|
```
|
||||||
|
@ -378,16 +379,76 @@ argument, followed (optionally) by the input dimension (`nI`). This is in
|
||||||
contrast to how the PyTorch layers are defined, where `in_features` precedes
|
contrast to how the PyTorch layers are defined, where `in_features` precedes
|
||||||
`out_features`.**
|
`out_features`.**
|
||||||
|
|
||||||
|
### Shape inference in thinc {#shape-inference}
|
||||||
|
|
||||||
<!-- TODO: shape inference, tagger assumes 50 output classes -->
|
It is not strictly necessary to define all the input and output dimensions for
|
||||||
|
each layer, as Thinc can perform shape inference between sequential layers by
|
||||||
|
matching up the output dimensionality of one layer to the input dimensionality
|
||||||
|
of the next. This means that we can simplify the `layers` definition:
|
||||||
|
|
||||||
|
```python
|
||||||
|
with Model.define_operators({">>": chain}):
|
||||||
|
layers = (
|
||||||
|
Relu(hidden_width, width)
|
||||||
|
>> Dropout(dropout)
|
||||||
|
>> Relu(hidden_width)
|
||||||
|
>> Dropout(dropout)
|
||||||
|
>> Softmax(nO)
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Thinc can go one step further and deduce the correct input dimension of the
|
||||||
|
first layer, and output dimension of the last. To enable this functionality, you
|
||||||
|
can call [`model.initialize`](https://thinc.ai/docs/api-model#initialize) with
|
||||||
|
an input sample `X` and an output sample `Y` with the correct dimensions.
|
||||||
|
|
||||||
|
```python
|
||||||
|
with Model.define_operators({">>": chain}):
|
||||||
|
layers = (
|
||||||
|
Relu(hidden_width)
|
||||||
|
>> Dropout(dropout)
|
||||||
|
>> Relu(hidden_width)
|
||||||
|
>> Dropout(dropout)
|
||||||
|
>> Softmax()
|
||||||
|
)
|
||||||
|
model = char_embed >> with_array(layers)
|
||||||
|
model.initialize(X=input_sample, Y=output_sample)
|
||||||
|
```
|
||||||
|
|
||||||
|
The built-in
|
||||||
|
[pipeline components](http://localhost:8000/usage/processing-pipelines) in spaCy
|
||||||
|
ensure that their internal models are always initialized with appropriate sample
|
||||||
|
data. In this case, `X` is typically a `List` of `Doc` objects, while `Y` is a
|
||||||
|
`List` of 1D or 2D arrays, depending on the specific task.
|
||||||
|
|
||||||
|
### Dropout and normalization {#drop-norm}
|
||||||
|
|
||||||
|
Many of the `Thinc` layers allow you to define a `dropout` argument that will
|
||||||
|
result in "chaining" an additional
|
||||||
|
[`Dropout`](https://thinc.ai/docs/api-layers#dropout) layer. Optionally, you can
|
||||||
|
often specify whether or not you want to add layer normalization, which would
|
||||||
|
result in an additional
|
||||||
|
[`LayerNorm`](https://thinc.ai/docs/api-layers#layernorm) layer.
|
||||||
|
|
||||||
|
That means that the following `layers` definition is equivalent to the previous:
|
||||||
|
|
||||||
|
```python
|
||||||
|
with Model.define_operators({">>": chain}):
|
||||||
|
layers = (
|
||||||
|
Relu(hidden_width, dropout=dropout, normalize=False)
|
||||||
|
>> Relu(hidden_width, dropout=dropout, normalize=False)
|
||||||
|
>> Softmax()
|
||||||
|
)
|
||||||
|
model = char_embed >> with_array(layers)
|
||||||
|
model.initialize(X=input_sample, Y=output_sample)
|
||||||
|
```
|
||||||
|
|
||||||
## Create new components {#components}
|
## Create new components {#components}
|
||||||
|
|
||||||
<!-- TODO:
|
<!-- TODO:
|
||||||
|
|
||||||
- Interaction with `predict`, `get_loss` and `set_annotations`
|
- Interaction with `predict`, `get_loss` and `set_annotations`
|
||||||
- Initialization life-cycle with `begin_training`.
|
- Initialization life-cycle with `begin_training`, correlation with add_label
|
||||||
|
|
||||||
Example: relation extraction component (implemented as project template)
|
Example: relation extraction component (implemented as project template)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user